MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj2 Structured version   Visualization version   GIF version

Theorem lsmdisj2 19700
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisj.i (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
lsmdisj2.i (𝜑 → (𝑆𝑇) = { 0 })
Assertion
Ref Expression
lsmdisj2 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) = { 0 })

Proof of Theorem lsmdisj2
Dummy variables 𝑥 𝑢 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmcntz.s . . . . . . 7 (𝜑𝑆 ∈ (SubGrp‘𝐺))
2 lsmcntz.u . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 eqid 2737 . . . . . . . 8 (+g𝐺) = (+g𝐺)
4 lsmcntz.p . . . . . . . 8 = (LSSum‘𝐺)
53, 4lsmelval 19667 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑆 𝑈) ↔ ∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢)))
61, 2, 5syl2anc 584 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑆 𝑈) ↔ ∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢)))
7 simplrl 777 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠𝑆)
8 subgrcl 19149 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
91, 8syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐺 ∈ Grp)
109ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝐺 ∈ Grp)
111ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑆 ∈ (SubGrp‘𝐺))
12 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝐺) = (Base‘𝐺)
1312subgss 19145 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1411, 13syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑆 ⊆ (Base‘𝐺))
1514, 7sseldd 3984 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ (Base‘𝐺))
16 lsmdisj.o . . . . . . . . . . . . . . . . . . . . . . . . 25 0 = (0g𝐺)
17 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (invg𝐺) = (invg𝐺)
1812, 3, 16, 17grplinv 19007 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑠)(+g𝐺)𝑠) = 0 )
1910, 15, 18syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)𝑠) = 0 )
2019oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = ( 0 (+g𝐺)𝑢))
2117subginvcl 19153 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑠𝑆) → ((invg𝐺)‘𝑠) ∈ 𝑆)
2211, 7, 21syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((invg𝐺)‘𝑠) ∈ 𝑆)
2314, 22sseldd 3984 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((invg𝐺)‘𝑠) ∈ (Base‘𝐺))
242ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑈 ∈ (SubGrp‘𝐺))
2512subgss 19145 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2624, 25syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑈 ⊆ (Base‘𝐺))
27 simplrr 778 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢𝑈)
2826, 27sseldd 3984 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ (Base‘𝐺))
2912, 3grpass 18960 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑠) ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺))) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)))
3010, 23, 15, 28, 29syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)))
3112, 3, 16grplid 18985 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ( 0 (+g𝐺)𝑢) = 𝑢)
3210, 28, 31syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ( 0 (+g𝐺)𝑢) = 𝑢)
3320, 30, 323eqtr3d 2785 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) = 𝑢)
34 lsmcntz.t . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑇 ∈ (SubGrp‘𝐺))
3534ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑇 ∈ (SubGrp‘𝐺))
36 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) ∈ 𝑇)
373, 4lsmelvali 19668 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) ∧ (((invg𝐺)‘𝑠) ∈ 𝑆 ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇)) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) ∈ (𝑆 𝑇))
3811, 35, 22, 36, 37syl22anc 839 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) ∈ (𝑆 𝑇))
3933, 38eqeltrrd 2842 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ (𝑆 𝑇))
4039, 27elind 4200 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ ((𝑆 𝑇) ∩ 𝑈))
41 lsmdisj.i . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
4241ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
4340, 42eleqtrd 2843 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ { 0 })
44 elsni 4643 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ { 0 } → 𝑢 = 0 )
4543, 44syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 = 0 )
4645oveq2d 7447 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = (𝑠(+g𝐺) 0 ))
4712, 3, 16grprid 18986 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (Base‘𝐺)) → (𝑠(+g𝐺) 0 ) = 𝑠)
4810, 15, 47syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺) 0 ) = 𝑠)
4946, 48eqtrd 2777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = 𝑠)
5049, 36eqeltrrd 2842 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠𝑇)
517, 50elind 4200 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ (𝑆𝑇))
52 lsmdisj2.i . . . . . . . . . . . . . 14 (𝜑 → (𝑆𝑇) = { 0 })
5352ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑆𝑇) = { 0 })
5451, 53eleqtrd 2843 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ { 0 })
55 elsni 4643 . . . . . . . . . . . 12 (𝑠 ∈ { 0 } → 𝑠 = 0 )
5654, 55syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 = 0 )
5756, 45oveq12d 7449 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = ( 0 (+g𝐺) 0 ))
5812, 16grpidcl 18983 . . . . . . . . . . . 12 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
5912, 3, 16grplid 18985 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
609, 58, 59syl2anc2 585 . . . . . . . . . . 11 (𝜑 → ( 0 (+g𝐺) 0 ) = 0 )
6160ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ( 0 (+g𝐺) 0 ) = 0 )
6257, 61eqtrd 2777 . . . . . . . . 9 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = 0 )
6362ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑠𝑆𝑢𝑈)) → ((𝑠(+g𝐺)𝑢) ∈ 𝑇 → (𝑠(+g𝐺)𝑢) = 0 ))
64 eleq1 2829 . . . . . . . . 9 (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇 ↔ (𝑠(+g𝐺)𝑢) ∈ 𝑇))
65 eqeq1 2741 . . . . . . . . 9 (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥 = 0 ↔ (𝑠(+g𝐺)𝑢) = 0 ))
6664, 65imbi12d 344 . . . . . . . 8 (𝑥 = (𝑠(+g𝐺)𝑢) → ((𝑥𝑇𝑥 = 0 ) ↔ ((𝑠(+g𝐺)𝑢) ∈ 𝑇 → (𝑠(+g𝐺)𝑢) = 0 )))
6763, 66syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆𝑢𝑈)) → (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇𝑥 = 0 )))
6867rexlimdvva 3213 . . . . . 6 (𝜑 → (∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇𝑥 = 0 )))
696, 68sylbid 240 . . . . 5 (𝜑 → (𝑥 ∈ (𝑆 𝑈) → (𝑥𝑇𝑥 = 0 )))
7069impcomd 411 . . . 4 (𝜑 → ((𝑥𝑇𝑥 ∈ (𝑆 𝑈)) → 𝑥 = 0 ))
71 elin 3967 . . . 4 (𝑥 ∈ (𝑇 ∩ (𝑆 𝑈)) ↔ (𝑥𝑇𝑥 ∈ (𝑆 𝑈)))
72 velsn 4642 . . . 4 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
7370, 71, 723imtr4g 296 . . 3 (𝜑 → (𝑥 ∈ (𝑇 ∩ (𝑆 𝑈)) → 𝑥 ∈ { 0 }))
7473ssrdv 3989 . 2 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) ⊆ { 0 })
7516subg0cl 19152 . . . . 5 (𝑇 ∈ (SubGrp‘𝐺) → 0𝑇)
7634, 75syl 17 . . . 4 (𝜑0𝑇)
774lsmub1 19675 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑈))
781, 2, 77syl2anc 584 . . . . 5 (𝜑𝑆 ⊆ (𝑆 𝑈))
7916subg0cl 19152 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
801, 79syl 17 . . . . 5 (𝜑0𝑆)
8178, 80sseldd 3984 . . . 4 (𝜑0 ∈ (𝑆 𝑈))
8276, 81elind 4200 . . 3 (𝜑0 ∈ (𝑇 ∩ (𝑆 𝑈)))
8382snssd 4809 . 2 (𝜑 → { 0 } ⊆ (𝑇 ∩ (𝑆 𝑈)))
8474, 83eqssd 4001 1 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  cin 3950  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952  SubGrpcsubg 19138  LSSumclsm 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-subg 19141  df-lsm 19654
This theorem is referenced by:  lsmdisj3  19701  lsmdisj2r  19703  lsmdisj2a  19705  dprd2da  20062
  Copyright terms: Public domain W3C validator