MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj2 Structured version   Visualization version   GIF version

Theorem lsmdisj2 19288
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisj.i (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
lsmdisj2.i (𝜑 → (𝑆𝑇) = { 0 })
Assertion
Ref Expression
lsmdisj2 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) = { 0 })

Proof of Theorem lsmdisj2
Dummy variables 𝑥 𝑢 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmcntz.s . . . . . . 7 (𝜑𝑆 ∈ (SubGrp‘𝐺))
2 lsmcntz.u . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
4 lsmcntz.p . . . . . . . 8 = (LSSum‘𝐺)
53, 4lsmelval 19254 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑆 𝑈) ↔ ∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢)))
61, 2, 5syl2anc 584 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑆 𝑈) ↔ ∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢)))
7 simplrl 774 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠𝑆)
8 subgrcl 18760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
91, 8syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐺 ∈ Grp)
109ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝐺 ∈ Grp)
111ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑆 ∈ (SubGrp‘𝐺))
12 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝐺) = (Base‘𝐺)
1312subgss 18756 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1411, 13syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑆 ⊆ (Base‘𝐺))
1514, 7sseldd 3922 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ (Base‘𝐺))
16 lsmdisj.o . . . . . . . . . . . . . . . . . . . . . . . . 25 0 = (0g𝐺)
17 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 (invg𝐺) = (invg𝐺)
1812, 3, 16, 17grplinv 18628 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑠)(+g𝐺)𝑠) = 0 )
1910, 15, 18syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)𝑠) = 0 )
2019oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = ( 0 (+g𝐺)𝑢))
2117subginvcl 18764 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑠𝑆) → ((invg𝐺)‘𝑠) ∈ 𝑆)
2211, 7, 21syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((invg𝐺)‘𝑠) ∈ 𝑆)
2314, 22sseldd 3922 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((invg𝐺)‘𝑠) ∈ (Base‘𝐺))
242ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑈 ∈ (SubGrp‘𝐺))
2512subgss 18756 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2624, 25syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑈 ⊆ (Base‘𝐺))
27 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢𝑈)
2826, 27sseldd 3922 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ (Base‘𝐺))
2912, 3grpass 18586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑠) ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺))) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)))
3010, 23, 15, 28, 29syl13anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)))
3112, 3, 16grplid 18609 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ( 0 (+g𝐺)𝑢) = 𝑢)
3210, 28, 31syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ( 0 (+g𝐺)𝑢) = 𝑢)
3320, 30, 323eqtr3d 2786 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) = 𝑢)
34 lsmcntz.t . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑇 ∈ (SubGrp‘𝐺))
3534ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑇 ∈ (SubGrp‘𝐺))
36 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) ∈ 𝑇)
373, 4lsmelvali 19255 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) ∧ (((invg𝐺)‘𝑠) ∈ 𝑆 ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇)) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) ∈ (𝑆 𝑇))
3811, 35, 22, 36, 37syl22anc 836 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) ∈ (𝑆 𝑇))
3933, 38eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ (𝑆 𝑇))
4039, 27elind 4128 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ ((𝑆 𝑇) ∩ 𝑈))
41 lsmdisj.i . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
4241ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
4340, 42eleqtrd 2841 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ { 0 })
44 elsni 4578 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ { 0 } → 𝑢 = 0 )
4543, 44syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 = 0 )
4645oveq2d 7291 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = (𝑠(+g𝐺) 0 ))
4712, 3, 16grprid 18610 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (Base‘𝐺)) → (𝑠(+g𝐺) 0 ) = 𝑠)
4810, 15, 47syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺) 0 ) = 𝑠)
4946, 48eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = 𝑠)
5049, 36eqeltrrd 2840 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠𝑇)
517, 50elind 4128 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ (𝑆𝑇))
52 lsmdisj2.i . . . . . . . . . . . . . 14 (𝜑 → (𝑆𝑇) = { 0 })
5352ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑆𝑇) = { 0 })
5451, 53eleqtrd 2841 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ { 0 })
55 elsni 4578 . . . . . . . . . . . 12 (𝑠 ∈ { 0 } → 𝑠 = 0 )
5654, 55syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 = 0 )
5756, 45oveq12d 7293 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = ( 0 (+g𝐺) 0 ))
5812, 16grpidcl 18607 . . . . . . . . . . . 12 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
5912, 3, 16grplid 18609 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
609, 58, 59syl2anc2 585 . . . . . . . . . . 11 (𝜑 → ( 0 (+g𝐺) 0 ) = 0 )
6160ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ( 0 (+g𝐺) 0 ) = 0 )
6257, 61eqtrd 2778 . . . . . . . . 9 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = 0 )
6362ex 413 . . . . . . . 8 ((𝜑 ∧ (𝑠𝑆𝑢𝑈)) → ((𝑠(+g𝐺)𝑢) ∈ 𝑇 → (𝑠(+g𝐺)𝑢) = 0 ))
64 eleq1 2826 . . . . . . . . 9 (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇 ↔ (𝑠(+g𝐺)𝑢) ∈ 𝑇))
65 eqeq1 2742 . . . . . . . . 9 (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥 = 0 ↔ (𝑠(+g𝐺)𝑢) = 0 ))
6664, 65imbi12d 345 . . . . . . . 8 (𝑥 = (𝑠(+g𝐺)𝑢) → ((𝑥𝑇𝑥 = 0 ) ↔ ((𝑠(+g𝐺)𝑢) ∈ 𝑇 → (𝑠(+g𝐺)𝑢) = 0 )))
6763, 66syl5ibrcom 246 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆𝑢𝑈)) → (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇𝑥 = 0 )))
6867rexlimdvva 3223 . . . . . 6 (𝜑 → (∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇𝑥 = 0 )))
696, 68sylbid 239 . . . . 5 (𝜑 → (𝑥 ∈ (𝑆 𝑈) → (𝑥𝑇𝑥 = 0 )))
7069impcomd 412 . . . 4 (𝜑 → ((𝑥𝑇𝑥 ∈ (𝑆 𝑈)) → 𝑥 = 0 ))
71 elin 3903 . . . 4 (𝑥 ∈ (𝑇 ∩ (𝑆 𝑈)) ↔ (𝑥𝑇𝑥 ∈ (𝑆 𝑈)))
72 velsn 4577 . . . 4 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
7370, 71, 723imtr4g 296 . . 3 (𝜑 → (𝑥 ∈ (𝑇 ∩ (𝑆 𝑈)) → 𝑥 ∈ { 0 }))
7473ssrdv 3927 . 2 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) ⊆ { 0 })
7516subg0cl 18763 . . . . 5 (𝑇 ∈ (SubGrp‘𝐺) → 0𝑇)
7634, 75syl 17 . . . 4 (𝜑0𝑇)
774lsmub1 19262 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑈))
781, 2, 77syl2anc 584 . . . . 5 (𝜑𝑆 ⊆ (𝑆 𝑈))
7916subg0cl 18763 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
801, 79syl 17 . . . . 5 (𝜑0𝑆)
8178, 80sseldd 3922 . . . 4 (𝜑0 ∈ (𝑆 𝑈))
8276, 81elind 4128 . . 3 (𝜑0 ∈ (𝑇 ∩ (𝑆 𝑈)))
8382snssd 4742 . 2 (𝜑 → { 0 } ⊆ (𝑇 ∩ (𝑆 𝑈)))
8474, 83eqssd 3938 1 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  cin 3886  wss 3887  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578  SubGrpcsubg 18749  LSSumclsm 19239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-subg 18752  df-lsm 19241
This theorem is referenced by:  lsmdisj3  19289  lsmdisj2r  19291  lsmdisj2a  19293  dprd2da  19645
  Copyright terms: Public domain W3C validator