MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj2 Structured version   Visualization version   GIF version

Theorem lsmdisj2 18803
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisj.i (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
lsmdisj2.i (𝜑 → (𝑆𝑇) = { 0 })
Assertion
Ref Expression
lsmdisj2 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) = { 0 })

Proof of Theorem lsmdisj2
Dummy variables 𝑥 𝑢 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmcntz.s . . . . . . 7 (𝜑𝑆 ∈ (SubGrp‘𝐺))
2 lsmcntz.u . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 eqid 2801 . . . . . . . 8 (+g𝐺) = (+g𝐺)
4 lsmcntz.p . . . . . . . 8 = (LSSum‘𝐺)
53, 4lsmelval 18769 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑆 𝑈) ↔ ∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢)))
61, 2, 5syl2anc 587 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑆 𝑈) ↔ ∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢)))
7 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠𝑆)
8 subgrcl 18279 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
91, 8syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐺 ∈ Grp)
109ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝐺 ∈ Grp)
111ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑆 ∈ (SubGrp‘𝐺))
12 eqid 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝐺) = (Base‘𝐺)
1312subgss 18275 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1411, 13syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑆 ⊆ (Base‘𝐺))
1514, 7sseldd 3919 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ (Base‘𝐺))
16 lsmdisj.o . . . . . . . . . . . . . . . . . . . . . . . . 25 0 = (0g𝐺)
17 eqid 2801 . . . . . . . . . . . . . . . . . . . . . . . . 25 (invg𝐺) = (invg𝐺)
1812, 3, 16, 17grplinv 18147 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑠)(+g𝐺)𝑠) = 0 )
1910, 15, 18syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)𝑠) = 0 )
2019oveq1d 7154 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = ( 0 (+g𝐺)𝑢))
2117subginvcl 18283 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑠𝑆) → ((invg𝐺)‘𝑠) ∈ 𝑆)
2211, 7, 21syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((invg𝐺)‘𝑠) ∈ 𝑆)
2314, 22sseldd 3919 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((invg𝐺)‘𝑠) ∈ (Base‘𝐺))
242ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑈 ∈ (SubGrp‘𝐺))
2512subgss 18275 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2624, 25syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑈 ⊆ (Base‘𝐺))
27 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢𝑈)
2826, 27sseldd 3919 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ (Base‘𝐺))
2912, 3grpass 18107 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑠) ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺))) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)))
3010, 23, 15, 28, 29syl13anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)))
3112, 3, 16grplid 18128 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ( 0 (+g𝐺)𝑢) = 𝑢)
3210, 28, 31syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ( 0 (+g𝐺)𝑢) = 𝑢)
3320, 30, 323eqtr3d 2844 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) = 𝑢)
34 lsmcntz.t . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑇 ∈ (SubGrp‘𝐺))
3534ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑇 ∈ (SubGrp‘𝐺))
36 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) ∈ 𝑇)
373, 4lsmelvali 18770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) ∧ (((invg𝐺)‘𝑠) ∈ 𝑆 ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇)) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) ∈ (𝑆 𝑇))
3811, 35, 22, 36, 37syl22anc 837 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) ∈ (𝑆 𝑇))
3933, 38eqeltrrd 2894 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ (𝑆 𝑇))
4039, 27elind 4124 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ ((𝑆 𝑇) ∩ 𝑈))
41 lsmdisj.i . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
4241ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
4340, 42eleqtrd 2895 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ { 0 })
44 elsni 4545 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ { 0 } → 𝑢 = 0 )
4543, 44syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 = 0 )
4645oveq2d 7155 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = (𝑠(+g𝐺) 0 ))
4712, 3, 16grprid 18129 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (Base‘𝐺)) → (𝑠(+g𝐺) 0 ) = 𝑠)
4810, 15, 47syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺) 0 ) = 𝑠)
4946, 48eqtrd 2836 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = 𝑠)
5049, 36eqeltrrd 2894 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠𝑇)
517, 50elind 4124 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ (𝑆𝑇))
52 lsmdisj2.i . . . . . . . . . . . . . 14 (𝜑 → (𝑆𝑇) = { 0 })
5352ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑆𝑇) = { 0 })
5451, 53eleqtrd 2895 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ { 0 })
55 elsni 4545 . . . . . . . . . . . 12 (𝑠 ∈ { 0 } → 𝑠 = 0 )
5654, 55syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 = 0 )
5756, 45oveq12d 7157 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = ( 0 (+g𝐺) 0 ))
5812, 16grpidcl 18126 . . . . . . . . . . . 12 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
5912, 3, 16grplid 18128 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
609, 58, 59syl2anc2 588 . . . . . . . . . . 11 (𝜑 → ( 0 (+g𝐺) 0 ) = 0 )
6160ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ( 0 (+g𝐺) 0 ) = 0 )
6257, 61eqtrd 2836 . . . . . . . . 9 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = 0 )
6362ex 416 . . . . . . . 8 ((𝜑 ∧ (𝑠𝑆𝑢𝑈)) → ((𝑠(+g𝐺)𝑢) ∈ 𝑇 → (𝑠(+g𝐺)𝑢) = 0 ))
64 eleq1 2880 . . . . . . . . 9 (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇 ↔ (𝑠(+g𝐺)𝑢) ∈ 𝑇))
65 eqeq1 2805 . . . . . . . . 9 (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥 = 0 ↔ (𝑠(+g𝐺)𝑢) = 0 ))
6664, 65imbi12d 348 . . . . . . . 8 (𝑥 = (𝑠(+g𝐺)𝑢) → ((𝑥𝑇𝑥 = 0 ) ↔ ((𝑠(+g𝐺)𝑢) ∈ 𝑇 → (𝑠(+g𝐺)𝑢) = 0 )))
6763, 66syl5ibrcom 250 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆𝑢𝑈)) → (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇𝑥 = 0 )))
6867rexlimdvva 3256 . . . . . 6 (𝜑 → (∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇𝑥 = 0 )))
696, 68sylbid 243 . . . . 5 (𝜑 → (𝑥 ∈ (𝑆 𝑈) → (𝑥𝑇𝑥 = 0 )))
7069impcomd 415 . . . 4 (𝜑 → ((𝑥𝑇𝑥 ∈ (𝑆 𝑈)) → 𝑥 = 0 ))
71 elin 3900 . . . 4 (𝑥 ∈ (𝑇 ∩ (𝑆 𝑈)) ↔ (𝑥𝑇𝑥 ∈ (𝑆 𝑈)))
72 velsn 4544 . . . 4 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
7370, 71, 723imtr4g 299 . . 3 (𝜑 → (𝑥 ∈ (𝑇 ∩ (𝑆 𝑈)) → 𝑥 ∈ { 0 }))
7473ssrdv 3924 . 2 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) ⊆ { 0 })
7516subg0cl 18282 . . . . 5 (𝑇 ∈ (SubGrp‘𝐺) → 0𝑇)
7634, 75syl 17 . . . 4 (𝜑0𝑇)
774lsmub1 18777 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑈))
781, 2, 77syl2anc 587 . . . . 5 (𝜑𝑆 ⊆ (𝑆 𝑈))
7916subg0cl 18282 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
801, 79syl 17 . . . . 5 (𝜑0𝑆)
8178, 80sseldd 3919 . . . 4 (𝜑0 ∈ (𝑆 𝑈))
8276, 81elind 4124 . . 3 (𝜑0 ∈ (𝑇 ∩ (𝑆 𝑈)))
8382snssd 4705 . 2 (𝜑 → { 0 } ⊆ (𝑇 ∩ (𝑆 𝑈)))
8474, 83eqssd 3935 1 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wrex 3110  cin 3883  wss 3884  {csn 4528  cfv 6328  (class class class)co 7139  Basecbs 16478  +gcplusg 16560  0gc0g 16708  Grpcgrp 18098  invgcminusg 18099  SubGrpcsubg 18268  LSSumclsm 18754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-subg 18271  df-lsm 18756
This theorem is referenced by:  lsmdisj3  18804  lsmdisj2r  18806  lsmdisj2a  18808  dprd2da  19160
  Copyright terms: Public domain W3C validator