MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj2 Structured version   Visualization version   GIF version

Theorem lsmdisj2 19026
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisj.i (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
lsmdisj2.i (𝜑 → (𝑆𝑇) = { 0 })
Assertion
Ref Expression
lsmdisj2 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) = { 0 })

Proof of Theorem lsmdisj2
Dummy variables 𝑥 𝑢 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmcntz.s . . . . . . 7 (𝜑𝑆 ∈ (SubGrp‘𝐺))
2 lsmcntz.u . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 eqid 2736 . . . . . . . 8 (+g𝐺) = (+g𝐺)
4 lsmcntz.p . . . . . . . 8 = (LSSum‘𝐺)
53, 4lsmelval 18992 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑆 𝑈) ↔ ∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢)))
61, 2, 5syl2anc 587 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑆 𝑈) ↔ ∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢)))
7 simplrl 777 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠𝑆)
8 subgrcl 18502 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
91, 8syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐺 ∈ Grp)
109ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝐺 ∈ Grp)
111ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑆 ∈ (SubGrp‘𝐺))
12 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝐺) = (Base‘𝐺)
1312subgss 18498 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1411, 13syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑆 ⊆ (Base‘𝐺))
1514, 7sseldd 3888 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ (Base‘𝐺))
16 lsmdisj.o . . . . . . . . . . . . . . . . . . . . . . . . 25 0 = (0g𝐺)
17 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (invg𝐺) = (invg𝐺)
1812, 3, 16, 17grplinv 18370 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑠)(+g𝐺)𝑠) = 0 )
1910, 15, 18syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)𝑠) = 0 )
2019oveq1d 7206 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = ( 0 (+g𝐺)𝑢))
2117subginvcl 18506 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑠𝑆) → ((invg𝐺)‘𝑠) ∈ 𝑆)
2211, 7, 21syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((invg𝐺)‘𝑠) ∈ 𝑆)
2314, 22sseldd 3888 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((invg𝐺)‘𝑠) ∈ (Base‘𝐺))
242ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑈 ∈ (SubGrp‘𝐺))
2512subgss 18498 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2624, 25syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑈 ⊆ (Base‘𝐺))
27 simplrr 778 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢𝑈)
2826, 27sseldd 3888 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ (Base‘𝐺))
2912, 3grpass 18328 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑠) ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺))) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)))
3010, 23, 15, 28, 29syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((((invg𝐺)‘𝑠)(+g𝐺)𝑠)(+g𝐺)𝑢) = (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)))
3112, 3, 16grplid 18351 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ( 0 (+g𝐺)𝑢) = 𝑢)
3210, 28, 31syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ( 0 (+g𝐺)𝑢) = 𝑢)
3320, 30, 323eqtr3d 2779 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) = 𝑢)
34 lsmcntz.t . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑇 ∈ (SubGrp‘𝐺))
3534ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑇 ∈ (SubGrp‘𝐺))
36 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) ∈ 𝑇)
373, 4lsmelvali 18993 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) ∧ (((invg𝐺)‘𝑠) ∈ 𝑆 ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇)) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) ∈ (𝑆 𝑇))
3811, 35, 22, 36, 37syl22anc 839 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (((invg𝐺)‘𝑠)(+g𝐺)(𝑠(+g𝐺)𝑢)) ∈ (𝑆 𝑇))
3933, 38eqeltrrd 2832 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ (𝑆 𝑇))
4039, 27elind 4094 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ ((𝑆 𝑇) ∩ 𝑈))
41 lsmdisj.i . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
4241ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
4340, 42eleqtrd 2833 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 ∈ { 0 })
44 elsni 4544 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ { 0 } → 𝑢 = 0 )
4543, 44syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑢 = 0 )
4645oveq2d 7207 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = (𝑠(+g𝐺) 0 ))
4712, 3, 16grprid 18352 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (Base‘𝐺)) → (𝑠(+g𝐺) 0 ) = 𝑠)
4810, 15, 47syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺) 0 ) = 𝑠)
4946, 48eqtrd 2771 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = 𝑠)
5049, 36eqeltrrd 2832 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠𝑇)
517, 50elind 4094 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ (𝑆𝑇))
52 lsmdisj2.i . . . . . . . . . . . . . 14 (𝜑 → (𝑆𝑇) = { 0 })
5352ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑆𝑇) = { 0 })
5451, 53eleqtrd 2833 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 ∈ { 0 })
55 elsni 4544 . . . . . . . . . . . 12 (𝑠 ∈ { 0 } → 𝑠 = 0 )
5654, 55syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → 𝑠 = 0 )
5756, 45oveq12d 7209 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = ( 0 (+g𝐺) 0 ))
5812, 16grpidcl 18349 . . . . . . . . . . . 12 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
5912, 3, 16grplid 18351 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
609, 58, 59syl2anc2 588 . . . . . . . . . . 11 (𝜑 → ( 0 (+g𝐺) 0 ) = 0 )
6160ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → ( 0 (+g𝐺) 0 ) = 0 )
6257, 61eqtrd 2771 . . . . . . . . 9 (((𝜑 ∧ (𝑠𝑆𝑢𝑈)) ∧ (𝑠(+g𝐺)𝑢) ∈ 𝑇) → (𝑠(+g𝐺)𝑢) = 0 )
6362ex 416 . . . . . . . 8 ((𝜑 ∧ (𝑠𝑆𝑢𝑈)) → ((𝑠(+g𝐺)𝑢) ∈ 𝑇 → (𝑠(+g𝐺)𝑢) = 0 ))
64 eleq1 2818 . . . . . . . . 9 (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇 ↔ (𝑠(+g𝐺)𝑢) ∈ 𝑇))
65 eqeq1 2740 . . . . . . . . 9 (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥 = 0 ↔ (𝑠(+g𝐺)𝑢) = 0 ))
6664, 65imbi12d 348 . . . . . . . 8 (𝑥 = (𝑠(+g𝐺)𝑢) → ((𝑥𝑇𝑥 = 0 ) ↔ ((𝑠(+g𝐺)𝑢) ∈ 𝑇 → (𝑠(+g𝐺)𝑢) = 0 )))
6763, 66syl5ibrcom 250 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆𝑢𝑈)) → (𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇𝑥 = 0 )))
6867rexlimdvva 3203 . . . . . 6 (𝜑 → (∃𝑠𝑆𝑢𝑈 𝑥 = (𝑠(+g𝐺)𝑢) → (𝑥𝑇𝑥 = 0 )))
696, 68sylbid 243 . . . . 5 (𝜑 → (𝑥 ∈ (𝑆 𝑈) → (𝑥𝑇𝑥 = 0 )))
7069impcomd 415 . . . 4 (𝜑 → ((𝑥𝑇𝑥 ∈ (𝑆 𝑈)) → 𝑥 = 0 ))
71 elin 3869 . . . 4 (𝑥 ∈ (𝑇 ∩ (𝑆 𝑈)) ↔ (𝑥𝑇𝑥 ∈ (𝑆 𝑈)))
72 velsn 4543 . . . 4 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
7370, 71, 723imtr4g 299 . . 3 (𝜑 → (𝑥 ∈ (𝑇 ∩ (𝑆 𝑈)) → 𝑥 ∈ { 0 }))
7473ssrdv 3893 . 2 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) ⊆ { 0 })
7516subg0cl 18505 . . . . 5 (𝑇 ∈ (SubGrp‘𝐺) → 0𝑇)
7634, 75syl 17 . . . 4 (𝜑0𝑇)
774lsmub1 19000 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑈))
781, 2, 77syl2anc 587 . . . . 5 (𝜑𝑆 ⊆ (𝑆 𝑈))
7916subg0cl 18505 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
801, 79syl 17 . . . . 5 (𝜑0𝑆)
8178, 80sseldd 3888 . . . 4 (𝜑0 ∈ (𝑆 𝑈))
8276, 81elind 4094 . . 3 (𝜑0 ∈ (𝑇 ∩ (𝑆 𝑈)))
8382snssd 4708 . 2 (𝜑 → { 0 } ⊆ (𝑇 ∩ (𝑆 𝑈)))
8474, 83eqssd 3904 1 (𝜑 → (𝑇 ∩ (𝑆 𝑈)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wrex 3052  cin 3852  wss 3853  {csn 4527  cfv 6358  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  0gc0g 16898  Grpcgrp 18319  invgcminusg 18320  SubGrpcsubg 18491  LSSumclsm 18977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-grp 18322  df-minusg 18323  df-subg 18494  df-lsm 18979
This theorem is referenced by:  lsmdisj3  19027  lsmdisj2r  19029  lsmdisj2a  19031  dprd2da  19383
  Copyright terms: Public domain W3C validator