MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltletr Structured version   Visualization version   GIF version

Theorem ltletr 11353
Description: Transitive law. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
ltletr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))

Proof of Theorem ltletr
StepHypRef Expression
1 leloe 11347 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
213adant1 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3 lttr 11337 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
43expcomd 416 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
5 breq2 5147 . . . . . 6 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
65biimpd 229 . . . . 5 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
76a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
84, 7jaod 860 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 < 𝐶𝐵 = 𝐶) → (𝐴 < 𝐵𝐴 < 𝐶)))
92, 8sylbid 240 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
109impcomd 411 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cr 11154   < clt 11295  cle 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301
This theorem is referenced by:  ltleletr  11354  ltletri  11389  ltletrd  11421  ltleadd  11746  lediv12a  12161  nngt0  12297  nnrecgt0  12309  elnnnn0c  12571  elnnz1  12643  zltp1le  12667  uz3m2nn  12933  zbtwnre  12988  ledivge1le  13106  addlelt  13149  qbtwnre  13241  xlemul1a  13330  xrsupsslem  13349  zltaddlt1le  13545  elfzodifsumelfzo  13770  ssfzo12bi  13800  elfznelfzo  13811  ceile  13889  swrdswrd  14743  swrdccatin1  14763  repswswrd  14822  01sqrexlem4  15284  resqrex  15289  caubnd  15397  rlim2lt  15533  cos01gt0  16227  ruclem12  16277  oddge22np1  16386  sadcaddlem  16494  nn0seqcvgd  16607  coprm  16748  prmgaplem7  17095  prmlem1  17145  prmlem2  17157  icoopnst  24969  ovollb2lem  25523  dvcnvrelem1  26056  aaliou  26380  tanord  26580  logdivlti  26662  logdivlt  26663  ftalem2  27117  gausslemma2dlem1a  27409  pntlem3  27653  crctcshwlkn0lem3  29832  nn0prpwlem  36323  isbasisrelowllem1  37356  isbasisrelowllem2  37357  ltflcei  37615  tan2h  37619  poimirlem29  37656  poimirlem32  37659  2xp3dxp2ge1d  42242  stoweidlem26  46041  stoweid  46078  2leaddle2  47310  gbegt5  47748  gbowgt5  47749  sgoldbeven3prm  47770  nnsum4primesodd  47783  nnsum4primesoddALTV  47784  evengpoap3  47786  bgoldbnnsum3prm  47791  cznnring  48178  nn0sumltlt  48266  rege1logbrege0  48479  rege1logbzge0  48480  fllog2  48489  dignn0ldlem  48523
  Copyright terms: Public domain W3C validator