MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltletr Structured version   Visualization version   GIF version

Theorem ltletr 11310
Description: Transitive law. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
ltletr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))

Proof of Theorem ltletr
StepHypRef Expression
1 leloe 11304 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
213adant1 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3 lttr 11294 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
43expcomd 417 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
5 breq2 5152 . . . . . 6 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
65biimpd 228 . . . . 5 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
76a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
84, 7jaod 857 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 < 𝐶𝐵 = 𝐶) → (𝐴 < 𝐵𝐴 < 𝐶)))
92, 8sylbid 239 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
109impcomd 412 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5148  cr 11111   < clt 11252  cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258
This theorem is referenced by:  ltleletr  11311  ltletri  11346  ltletrd  11378  ltleadd  11701  lediv12a  12111  nngt0  12247  nnrecgt0  12259  elnnnn0c  12521  elnnz1  12592  zltp1le  12616  uz3m2nn  12879  zbtwnre  12934  ledivge1le  13049  addlelt  13092  qbtwnre  13182  xlemul1a  13271  xrsupsslem  13290  zltaddlt1le  13486  elfzodifsumelfzo  13702  ssfzo12bi  13731  elfznelfzo  13741  ceile  13818  swrdswrd  14659  swrdccatin1  14679  repswswrd  14738  01sqrexlem4  15196  resqrex  15201  caubnd  15309  rlim2lt  15445  cos01gt0  16138  ruclem12  16188  oddge22np1  16296  sadcaddlem  16402  nn0seqcvgd  16511  coprm  16652  prmgaplem7  16994  prmlem1  17045  prmlem2  17057  icoopnst  24679  ovollb2lem  25229  dvcnvrelem1  25758  aaliou  26075  tanord  26271  logdivlti  26352  logdivlt  26353  ftalem2  26802  gausslemma2dlem1a  27092  pntlem3  27336  crctcshwlkn0lem3  29321  nn0prpwlem  35510  isbasisrelowllem1  36539  isbasisrelowllem2  36540  ltflcei  36779  tan2h  36783  poimirlem29  36820  poimirlem32  36823  2xp3dxp2ge1d  41328  stoweidlem26  45041  stoweid  45078  2leaddle2  46305  gbegt5  46728  gbowgt5  46729  sgoldbeven3prm  46750  nnsum4primesodd  46763  nnsum4primesoddALTV  46764  evengpoap3  46766  bgoldbnnsum3prm  46771  cznnring  46943  nn0sumltlt  47115  rege1logbrege0  47332  rege1logbzge0  47333  fllog2  47342  dignn0ldlem  47376
  Copyright terms: Public domain W3C validator