![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltletr | Structured version Visualization version GIF version |
Description: Transitive law. (Contributed by NM, 25-Aug-1999.) |
Ref | Expression |
---|---|
ltletr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leloe 11376 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
2 | 1 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
3 | lttr 11366 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
4 | 3 | expcomd 416 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
5 | breq2 5170 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 < 𝐵 ↔ 𝐴 < 𝐶)) | |
6 | 5 | biimpd 229 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 = 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
8 | 4, 7 | jaod 858 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
9 | 2, 8 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
10 | 9 | impcomd 411 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: ltleletr 11383 ltletri 11418 ltletrd 11450 ltleadd 11773 lediv12a 12188 nngt0 12324 nnrecgt0 12336 elnnnn0c 12598 elnnz1 12669 zltp1le 12693 uz3m2nn 12956 zbtwnre 13011 ledivge1le 13128 addlelt 13171 qbtwnre 13261 xlemul1a 13350 xrsupsslem 13369 zltaddlt1le 13565 elfzodifsumelfzo 13782 ssfzo12bi 13811 elfznelfzo 13822 ceile 13900 swrdswrd 14753 swrdccatin1 14773 repswswrd 14832 01sqrexlem4 15294 resqrex 15299 caubnd 15407 rlim2lt 15543 cos01gt0 16239 ruclem12 16289 oddge22np1 16397 sadcaddlem 16503 nn0seqcvgd 16617 coprm 16758 prmgaplem7 17104 prmlem1 17155 prmlem2 17167 icoopnst 24988 ovollb2lem 25542 dvcnvrelem1 26076 aaliou 26398 tanord 26598 logdivlti 26680 logdivlt 26681 ftalem2 27135 gausslemma2dlem1a 27427 pntlem3 27671 crctcshwlkn0lem3 29845 nn0prpwlem 36288 isbasisrelowllem1 37321 isbasisrelowllem2 37322 ltflcei 37568 tan2h 37572 poimirlem29 37609 poimirlem32 37612 2xp3dxp2ge1d 42198 stoweidlem26 45947 stoweid 45984 2leaddle2 47213 gbegt5 47635 gbowgt5 47636 sgoldbeven3prm 47657 nnsum4primesodd 47670 nnsum4primesoddALTV 47671 evengpoap3 47673 bgoldbnnsum3prm 47678 cznnring 47985 nn0sumltlt 48075 rege1logbrege0 48292 rege1logbzge0 48293 fllog2 48302 dignn0ldlem 48336 |
Copyright terms: Public domain | W3C validator |