| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltletr | Structured version Visualization version GIF version | ||
| Description: Transitive law. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltletr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe 11194 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
| 2 | 1 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 3 | lttr 11184 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 4 | 3 | expcomd 416 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
| 5 | breq2 5090 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 < 𝐵 ↔ 𝐴 < 𝐶)) | |
| 6 | 5 | biimpd 229 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 = 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
| 8 | 4, 7 | jaod 859 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
| 9 | 2, 8 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
| 10 | 9 | impcomd 411 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ℝcr 11000 < clt 11141 ≤ cle 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 |
| This theorem is referenced by: ltleletr 11201 ltletri 11236 ltletrd 11268 ltleadd 11595 lediv12a 12010 nngt0 12151 nnrecgt0 12163 elnnnn0c 12421 elnnz1 12493 zltp1le 12517 uz3m2nn 12787 zbtwnre 12839 ledivge1le 12958 addlelt 13001 qbtwnre 13093 xlemul1a 13182 xrsupsslem 13201 zltaddlt1le 13400 elfzodifsumelfzo 13626 ssfzo12bi 13656 elfznelfzo 13668 ceile 13748 swrdswrd 14607 swrdccatin1 14627 repswswrd 14686 01sqrexlem4 15147 resqrex 15152 caubnd 15261 rlim2lt 15399 cos01gt0 16095 ruclem12 16145 oddge22np1 16255 sadcaddlem 16363 nn0seqcvgd 16476 coprm 16617 prmgaplem7 16964 prmlem1 17014 prmlem2 17026 icoopnst 24858 ovollb2lem 25411 dvcnvrelem1 25944 aaliou 26268 tanord 26469 logdivlti 26551 logdivlt 26552 ftalem2 27006 gausslemma2dlem1a 27298 pntlem3 27542 crctcshwlkn0lem3 29785 nn0prpwlem 36356 isbasisrelowllem1 37389 isbasisrelowllem2 37390 ltflcei 37648 tan2h 37652 poimirlem29 37689 poimirlem32 37692 stoweidlem26 46064 stoweid 46101 2leaddle2 47329 gbegt5 47792 gbowgt5 47793 sgoldbeven3prm 47814 nnsum4primesodd 47827 nnsum4primesoddALTV 47828 evengpoap3 47830 bgoldbnnsum3prm 47835 cznnring 48293 nn0sumltlt 48381 rege1logbrege0 48590 rege1logbzge0 48591 fllog2 48600 dignn0ldlem 48634 |
| Copyright terms: Public domain | W3C validator |