MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltletr Structured version   Visualization version   GIF version

Theorem ltletr 11306
Description: Transitive law. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
ltletr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))

Proof of Theorem ltletr
StepHypRef Expression
1 leloe 11300 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
213adant1 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3 lttr 11290 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
43expcomd 418 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
5 breq2 5153 . . . . . 6 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
65biimpd 228 . . . . 5 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
76a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
84, 7jaod 858 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 < 𝐶𝐵 = 𝐶) → (𝐴 < 𝐵𝐴 < 𝐶)))
92, 8sylbid 239 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
109impcomd 413 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5149  cr 11109   < clt 11248  cle 11249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254
This theorem is referenced by:  ltleletr  11307  ltletri  11342  ltletrd  11374  ltleadd  11697  lediv12a  12107  nngt0  12243  nnrecgt0  12255  elnnnn0c  12517  elnnz1  12588  zltp1le  12612  uz3m2nn  12875  zbtwnre  12930  ledivge1le  13045  addlelt  13088  qbtwnre  13178  xlemul1a  13267  xrsupsslem  13286  zltaddlt1le  13482  elfzodifsumelfzo  13698  ssfzo12bi  13727  elfznelfzo  13737  ceile  13814  swrdswrd  14655  swrdccatin1  14675  repswswrd  14734  01sqrexlem4  15192  resqrex  15197  caubnd  15305  rlim2lt  15441  cos01gt0  16134  ruclem12  16184  oddge22np1  16292  sadcaddlem  16398  nn0seqcvgd  16507  coprm  16648  prmgaplem7  16990  prmlem1  17041  prmlem2  17053  icoopnst  24455  ovollb2lem  25005  dvcnvrelem1  25534  aaliou  25851  tanord  26047  logdivlti  26128  logdivlt  26129  ftalem2  26578  gausslemma2dlem1a  26868  pntlem3  27112  crctcshwlkn0lem3  29066  nn0prpwlem  35207  isbasisrelowllem1  36236  isbasisrelowllem2  36237  ltflcei  36476  tan2h  36480  poimirlem29  36517  poimirlem32  36520  2xp3dxp2ge1d  41022  stoweidlem26  44742  stoweid  44779  2leaddle2  46006  gbegt5  46429  gbowgt5  46430  sgoldbeven3prm  46451  nnsum4primesodd  46464  nnsum4primesoddALTV  46465  evengpoap3  46467  bgoldbnnsum3prm  46472  cznnring  46854  nn0sumltlt  47026  rege1logbrege0  47244  rege1logbzge0  47245  fllog2  47254  dignn0ldlem  47288
  Copyright terms: Public domain W3C validator