MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltletr Structured version   Visualization version   GIF version

Theorem ltletr 10419
Description: Transitive law. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
ltletr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))

Proof of Theorem ltletr
StepHypRef Expression
1 leloe 10414 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
213adant1 1161 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3 lttr 10404 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
43expcomd 407 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
5 breq2 4847 . . . . . . 7 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
65biimpd 221 . . . . . 6 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
76a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
84, 7jaod 886 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 < 𝐶𝐵 = 𝐶) → (𝐴 < 𝐵𝐴 < 𝐶)))
92, 8sylbid 232 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
109com23 86 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐵𝐶𝐴 < 𝐶)))
1110impd 399 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wo 874  w3a 1108   = wceq 1653  wcel 2157   class class class wbr 4843  cr 10223   < clt 10363  cle 10364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-resscn 10281  ax-pre-lttri 10298  ax-pre-lttrn 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369
This theorem is referenced by:  ltleletr  10420  ltletri  10455  ltletrd  10487  ltleadd  10803  lediv12a  11208  nngt0  11345  nnrecgt0  11356  elnnnn0c  11627  elnnz1  11693  zltp1le  11717  uz3m2nn  11975  zbtwnre  12031  ledivge1le  12146  addlelt  12189  qbtwnre  12279  xlemul1a  12367  xrsupsslem  12386  zltaddlt1le  12578  elfzodifsumelfzo  12789  ssfzo12bi  12818  elfznelfzo  12828  ceile  12903  swrdswrd  13748  swrdccatin1  13785  repswswrd  13864  pfx2  14032  sqrlem4  14327  resqrex  14332  caubnd  14439  rlim2lt  14569  cos01gt0  15257  znnenlemOLD  15276  ruclem12  15306  oddge22np1  15409  sadcaddlem  15514  nn0seqcvgd  15618  coprm  15756  prmgaplem7  16094  prmlem1  16142  prmlem2  16154  icoopnst  23066  ovollb2lem  23596  dvcnvrelem1  24121  aaliou  24434  tanord  24626  logdivlti  24707  logdivlt  24708  ftalem2  25152  gausslemma2dlem1a  25442  pntlem3  25650  crctcshwlkn0lem3  27063  nn0prpwlem  32829  isbasisrelowllem1  33701  isbasisrelowllem2  33702  ltflcei  33886  tan2h  33890  poimirlem29  33927  poimirlem32  33930  stoweidlem26  40986  stoweid  41023  2leaddle2  42153  gbegt5  42431  gbowgt5  42432  sgoldbeven3prm  42453  nnsum4primesodd  42466  nnsum4primesoddALTV  42467  evengpoap3  42469  bgoldbnnsum3prm  42474  cznnring  42755  nn0sumltlt  42927  rege1logbrege0  43151  rege1logbzge0  43152  fllog2  43161  dignn0ldlem  43195
  Copyright terms: Public domain W3C validator