| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltletr | Structured version Visualization version GIF version | ||
| Description: Transitive law. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltletr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe 11260 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
| 2 | 1 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 3 | lttr 11250 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 4 | 3 | expcomd 416 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
| 5 | breq2 5111 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 < 𝐵 ↔ 𝐴 < 𝐶)) | |
| 6 | 5 | biimpd 229 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 = 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
| 8 | 4, 7 | jaod 859 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
| 9 | 2, 8 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
| 10 | 9 | impcomd 411 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: ltleletr 11267 ltletri 11302 ltletrd 11334 ltleadd 11661 lediv12a 12076 nngt0 12217 nnrecgt0 12229 elnnnn0c 12487 elnnz1 12559 zltp1le 12583 uz3m2nn 12853 zbtwnre 12905 ledivge1le 13024 addlelt 13067 qbtwnre 13159 xlemul1a 13248 xrsupsslem 13267 zltaddlt1le 13466 elfzodifsumelfzo 13692 ssfzo12bi 13722 elfznelfzo 13733 ceile 13811 swrdswrd 14670 swrdccatin1 14690 repswswrd 14749 01sqrexlem4 15211 resqrex 15216 caubnd 15325 rlim2lt 15463 cos01gt0 16159 ruclem12 16209 oddge22np1 16319 sadcaddlem 16427 nn0seqcvgd 16540 coprm 16681 prmgaplem7 17028 prmlem1 17078 prmlem2 17090 icoopnst 24836 ovollb2lem 25389 dvcnvrelem1 25922 aaliou 26246 tanord 26447 logdivlti 26529 logdivlt 26530 ftalem2 26984 gausslemma2dlem1a 27276 pntlem3 27520 crctcshwlkn0lem3 29742 nn0prpwlem 36310 isbasisrelowllem1 37343 isbasisrelowllem2 37344 ltflcei 37602 tan2h 37606 poimirlem29 37643 poimirlem32 37646 stoweidlem26 46024 stoweid 46061 2leaddle2 47299 gbegt5 47762 gbowgt5 47763 sgoldbeven3prm 47784 nnsum4primesodd 47797 nnsum4primesoddALTV 47798 evengpoap3 47800 bgoldbnnsum3prm 47805 cznnring 48250 nn0sumltlt 48338 rege1logbrege0 48547 rege1logbzge0 48548 fllog2 48557 dignn0ldlem 48591 |
| Copyright terms: Public domain | W3C validator |