Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltletr | Structured version Visualization version GIF version |
Description: Transitive law. (Contributed by NM, 25-Aug-1999.) |
Ref | Expression |
---|---|
ltletr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leloe 10805 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
2 | 1 | 3adant1 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
3 | lttr 10795 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
4 | 3 | expcomd 420 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
5 | breq2 5034 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 < 𝐵 ↔ 𝐴 < 𝐶)) | |
6 | 5 | biimpd 232 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 = 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
8 | 4, 7 | jaod 858 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
9 | 2, 8 | sylbid 243 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 → (𝐴 < 𝐵 → 𝐴 < 𝐶))) |
10 | 9 | impcomd 415 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 class class class wbr 5030 ℝcr 10614 < clt 10753 ≤ cle 10754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-resscn 10672 ax-pre-lttri 10689 ax-pre-lttrn 10690 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 |
This theorem is referenced by: ltleletr 10811 ltletri 10846 ltletrd 10878 ltleadd 11201 lediv12a 11611 nngt0 11747 nnrecgt0 11759 elnnnn0c 12021 elnnz1 12089 zltp1le 12113 uz3m2nn 12373 zbtwnre 12428 ledivge1le 12543 addlelt 12586 qbtwnre 12675 xlemul1a 12764 xrsupsslem 12783 zltaddlt1le 12979 elfzodifsumelfzo 13194 ssfzo12bi 13223 elfznelfzo 13233 ceile 13308 swrdswrd 14156 swrdccatin1 14176 repswswrd 14235 sqrlem4 14695 resqrex 14700 caubnd 14808 rlim2lt 14944 cos01gt0 15636 ruclem12 15686 oddge22np1 15794 sadcaddlem 15900 nn0seqcvgd 16011 coprm 16152 prmgaplem7 16493 prmlem1 16544 prmlem2 16556 icoopnst 23691 ovollb2lem 24240 dvcnvrelem1 24769 aaliou 25086 tanord 25282 logdivlti 25363 logdivlt 25364 ftalem2 25811 gausslemma2dlem1a 26101 pntlem3 26345 crctcshwlkn0lem3 27750 nn0prpwlem 34149 isbasisrelowllem1 35149 isbasisrelowllem2 35150 ltflcei 35388 tan2h 35392 poimirlem29 35429 poimirlem32 35432 2xp3dxp2ge1d 39753 stoweidlem26 43109 stoweid 43146 2leaddle2 44324 gbegt5 44747 gbowgt5 44748 sgoldbeven3prm 44769 nnsum4primesodd 44782 nnsum4primesoddALTV 44783 evengpoap3 44785 bgoldbnnsum3prm 44790 cznnring 45048 nn0sumltlt 45220 rege1logbrege0 45438 rege1logbzge0 45439 fllog2 45448 dignn0ldlem 45482 |
Copyright terms: Public domain | W3C validator |