Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf1ofs Structured version   Visualization version   GIF version

Theorem indf1ofs 33323
Description: The bijection between finite subsets and the indicator functions with finite support. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
indf1ofs (𝑂𝑉 → ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
Distinct variable group:   𝑓,𝑂
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem indf1ofs
Dummy variables 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indf1o 33321 . . . 4 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))
2 f1of1 6832 . . . 4 ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂) → (𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑m 𝑂))
31, 2syl 17 . . 3 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑m 𝑂))
4 inss1 4228 . . 3 (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂
5 f1ores 6847 . . 3 (((𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑m 𝑂) ∧ (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂) → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)))
63, 4, 5sylancl 585 . 2 (𝑂𝑉 → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)))
7 resres 5994 . . . 4 (((𝟭‘𝑂) ↾ 𝒫 𝑂) ↾ Fin) = ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin))
8 f1ofn 6834 . . . . . 6 ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂) → (𝟭‘𝑂) Fn 𝒫 𝑂)
9 fnresdm 6669 . . . . . 6 ((𝟭‘𝑂) Fn 𝒫 𝑂 → ((𝟭‘𝑂) ↾ 𝒫 𝑂) = (𝟭‘𝑂))
101, 8, 93syl 18 . . . . 5 (𝑂𝑉 → ((𝟭‘𝑂) ↾ 𝒫 𝑂) = (𝟭‘𝑂))
1110reseq1d 5980 . . . 4 (𝑂𝑉 → (((𝟭‘𝑂) ↾ 𝒫 𝑂) ↾ Fin) = ((𝟭‘𝑂) ↾ Fin))
127, 11eqtr3id 2785 . . 3 (𝑂𝑉 → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)) = ((𝟭‘𝑂) ↾ Fin))
13 eqidd 2732 . . 3 (𝑂𝑉 → (𝒫 𝑂 ∩ Fin) = (𝒫 𝑂 ∩ Fin))
14 simpll 764 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑂𝑉)
15 simpr 484 . . . . . . . . . . . . . 14 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ (𝒫 𝑂 ∩ Fin))
164, 15sselid 3980 . . . . . . . . . . . . 13 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ 𝒫 𝑂)
1716elpwid 4611 . . . . . . . . . . . 12 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎𝑂)
18 indf 33312 . . . . . . . . . . . 12 ((𝑂𝑉𝑎𝑂) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
1917, 18syldan 590 . . . . . . . . . . 11 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
2019adantr 480 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
21 simpr 484 . . . . . . . . . . 11 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎) = 𝑔)
2221feq1d 6702 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1} ↔ 𝑔:𝑂⟶{0, 1}))
2320, 22mpbid 231 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑔:𝑂⟶{0, 1})
24 prex 5432 . . . . . . . . . . 11 {0, 1} ∈ V
25 elmapg 8836 . . . . . . . . . . 11 (({0, 1} ∈ V ∧ 𝑂𝑉) → (𝑔 ∈ ({0, 1} ↑m 𝑂) ↔ 𝑔:𝑂⟶{0, 1}))
2624, 25mpan 687 . . . . . . . . . 10 (𝑂𝑉 → (𝑔 ∈ ({0, 1} ↑m 𝑂) ↔ 𝑔:𝑂⟶{0, 1}))
2726biimpar 477 . . . . . . . . 9 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → 𝑔 ∈ ({0, 1} ↑m 𝑂))
2814, 23, 27syl2anc 583 . . . . . . . 8 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑔 ∈ ({0, 1} ↑m 𝑂))
2921cnveqd 5875 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎) = 𝑔)
3029imaeq1d 6058 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎) “ {1}) = (𝑔 “ {1}))
31 indpi1 33317 . . . . . . . . . . . 12 ((𝑂𝑉𝑎𝑂) → (((𝟭‘𝑂)‘𝑎) “ {1}) = 𝑎)
3217, 31syldan 590 . . . . . . . . . . 11 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) “ {1}) = 𝑎)
33 inss2 4229 . . . . . . . . . . . 12 (𝒫 𝑂 ∩ Fin) ⊆ Fin
3433, 15sselid 3980 . . . . . . . . . . 11 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ Fin)
3532, 34eqeltrd 2832 . . . . . . . . . 10 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) “ {1}) ∈ Fin)
3635adantr 480 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎) “ {1}) ∈ Fin)
3730, 36eqeltrrd 2833 . . . . . . . 8 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (𝑔 “ {1}) ∈ Fin)
3828, 37jca 511 . . . . . . 7 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin))
3938rexlimdva2 3156 . . . . . 6 (𝑂𝑉 → (∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔 → (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
40 cnvimass 6080 . . . . . . . . . 10 (𝑔 “ {1}) ⊆ dom 𝑔
4126biimpa 476 . . . . . . . . . . . 12 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑m 𝑂)) → 𝑔:𝑂⟶{0, 1})
4241fdmd 6728 . . . . . . . . . . 11 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑m 𝑂)) → dom 𝑔 = 𝑂)
4342adantrr 714 . . . . . . . . . 10 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → dom 𝑔 = 𝑂)
4440, 43sseqtrid 4034 . . . . . . . . 9 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ⊆ 𝑂)
45 simprr 770 . . . . . . . . 9 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ∈ Fin)
46 elfpw 9357 . . . . . . . . 9 ((𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin) ↔ ((𝑔 “ {1}) ⊆ 𝑂 ∧ (𝑔 “ {1}) ∈ Fin))
4744, 45, 46sylanbrc 582 . . . . . . . 8 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin))
48 indpreima 33322 . . . . . . . . . . 11 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → 𝑔 = ((𝟭‘𝑂)‘(𝑔 “ {1})))
4948eqcomd 2737 . . . . . . . . . 10 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
5041, 49syldan 590 . . . . . . . . 9 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑m 𝑂)) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
5150adantrr 714 . . . . . . . 8 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
52 fveqeq2 6900 . . . . . . . . 9 (𝑎 = (𝑔 “ {1}) → (((𝟭‘𝑂)‘𝑎) = 𝑔 ↔ ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔))
5352rspcev 3612 . . . . . . . 8 (((𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin) ∧ ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔)
5447, 51, 53syl2anc 583 . . . . . . 7 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔)
5554ex 412 . . . . . 6 (𝑂𝑉 → ((𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
5639, 55impbid 211 . . . . 5 (𝑂𝑉 → (∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔 ↔ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
571, 8syl 17 . . . . . 6 (𝑂𝑉 → (𝟭‘𝑂) Fn 𝒫 𝑂)
58 fvelimab 6964 . . . . . 6 (((𝟭‘𝑂) Fn 𝒫 𝑂 ∧ (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂) → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
5957, 4, 58sylancl 585 . . . . 5 (𝑂𝑉 → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
60 cnveq 5873 . . . . . . . . 9 (𝑓 = 𝑔𝑓 = 𝑔)
6160imaeq1d 6058 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓 “ {1}) = (𝑔 “ {1}))
6261eleq1d 2817 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓 “ {1}) ∈ Fin ↔ (𝑔 “ {1}) ∈ Fin))
6362elrab 3683 . . . . . 6 (𝑔 ∈ {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin} ↔ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin))
6463a1i 11 . . . . 5 (𝑂𝑉 → (𝑔 ∈ {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin} ↔ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
6556, 59, 643bitr4d 311 . . . 4 (𝑂𝑉 → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ 𝑔 ∈ {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin}))
6665eqrdv 2729 . . 3 (𝑂𝑉 → ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) = {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
6712, 13, 66f1oeq123d 6827 . 2 (𝑂𝑉 → (((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin}))
686, 67mpbid 231 1 (𝑂𝑉 → ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wrex 3069  {crab 3431  Vcvv 3473  cin 3947  wss 3948  𝒫 cpw 4602  {csn 4628  {cpr 4630  ccnv 5675  dom cdm 5676  cres 5678  cima 5679   Fn wfn 6538  wf 6539  1-1wf1 6540  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7412  m cmap 8823  Fincfn 8942  0cc0 11113  1c1 11114  𝟭cind 33307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-i2m1 11181  ax-1ne0 11182  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8825  df-ind 33308
This theorem is referenced by:  eulerpartgbij  33670
  Copyright terms: Public domain W3C validator