Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf1ofs Structured version   Visualization version   GIF version

Theorem indf1ofs 31577
Description: The bijection between finite subsets and the indicator functions with finite support. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
indf1ofs (𝑂𝑉 → ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
Distinct variable group:   𝑓,𝑂
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem indf1ofs
Dummy variables 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indf1o 31575 . . . 4 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))
2 f1of1 6630 . . . 4 ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂) → (𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑m 𝑂))
31, 2syl 17 . . 3 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑m 𝑂))
4 inss1 4129 . . 3 (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂
5 f1ores 6645 . . 3 (((𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑m 𝑂) ∧ (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂) → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)))
63, 4, 5sylancl 589 . 2 (𝑂𝑉 → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)))
7 resres 5848 . . . 4 (((𝟭‘𝑂) ↾ 𝒫 𝑂) ↾ Fin) = ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin))
8 f1ofn 6632 . . . . . 6 ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂) → (𝟭‘𝑂) Fn 𝒫 𝑂)
9 fnresdm 6466 . . . . . 6 ((𝟭‘𝑂) Fn 𝒫 𝑂 → ((𝟭‘𝑂) ↾ 𝒫 𝑂) = (𝟭‘𝑂))
101, 8, 93syl 18 . . . . 5 (𝑂𝑉 → ((𝟭‘𝑂) ↾ 𝒫 𝑂) = (𝟭‘𝑂))
1110reseq1d 5834 . . . 4 (𝑂𝑉 → (((𝟭‘𝑂) ↾ 𝒫 𝑂) ↾ Fin) = ((𝟭‘𝑂) ↾ Fin))
127, 11eqtr3id 2788 . . 3 (𝑂𝑉 → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)) = ((𝟭‘𝑂) ↾ Fin))
13 eqidd 2740 . . 3 (𝑂𝑉 → (𝒫 𝑂 ∩ Fin) = (𝒫 𝑂 ∩ Fin))
14 simpll 767 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑂𝑉)
15 simpr 488 . . . . . . . . . . . . . 14 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ (𝒫 𝑂 ∩ Fin))
164, 15sseldi 3885 . . . . . . . . . . . . 13 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ 𝒫 𝑂)
1716elpwid 4509 . . . . . . . . . . . 12 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎𝑂)
18 indf 31566 . . . . . . . . . . . 12 ((𝑂𝑉𝑎𝑂) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
1917, 18syldan 594 . . . . . . . . . . 11 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
2019adantr 484 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
21 simpr 488 . . . . . . . . . . 11 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎) = 𝑔)
2221feq1d 6500 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1} ↔ 𝑔:𝑂⟶{0, 1}))
2320, 22mpbid 235 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑔:𝑂⟶{0, 1})
24 prex 5309 . . . . . . . . . . 11 {0, 1} ∈ V
25 elmapg 8463 . . . . . . . . . . 11 (({0, 1} ∈ V ∧ 𝑂𝑉) → (𝑔 ∈ ({0, 1} ↑m 𝑂) ↔ 𝑔:𝑂⟶{0, 1}))
2624, 25mpan 690 . . . . . . . . . 10 (𝑂𝑉 → (𝑔 ∈ ({0, 1} ↑m 𝑂) ↔ 𝑔:𝑂⟶{0, 1}))
2726biimpar 481 . . . . . . . . 9 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → 𝑔 ∈ ({0, 1} ↑m 𝑂))
2814, 23, 27syl2anc 587 . . . . . . . 8 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑔 ∈ ({0, 1} ↑m 𝑂))
2921cnveqd 5728 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎) = 𝑔)
3029imaeq1d 5912 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎) “ {1}) = (𝑔 “ {1}))
31 indpi1 31571 . . . . . . . . . . . 12 ((𝑂𝑉𝑎𝑂) → (((𝟭‘𝑂)‘𝑎) “ {1}) = 𝑎)
3217, 31syldan 594 . . . . . . . . . . 11 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) “ {1}) = 𝑎)
33 inss2 4130 . . . . . . . . . . . 12 (𝒫 𝑂 ∩ Fin) ⊆ Fin
3433, 15sseldi 3885 . . . . . . . . . . 11 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ Fin)
3532, 34eqeltrd 2834 . . . . . . . . . 10 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) “ {1}) ∈ Fin)
3635adantr 484 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎) “ {1}) ∈ Fin)
3730, 36eqeltrrd 2835 . . . . . . . 8 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (𝑔 “ {1}) ∈ Fin)
3828, 37jca 515 . . . . . . 7 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin))
3938rexlimdva2 3198 . . . . . 6 (𝑂𝑉 → (∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔 → (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
40 cnvimass 5933 . . . . . . . . . 10 (𝑔 “ {1}) ⊆ dom 𝑔
4126biimpa 480 . . . . . . . . . . . 12 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑m 𝑂)) → 𝑔:𝑂⟶{0, 1})
4241fdmd 6526 . . . . . . . . . . 11 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑m 𝑂)) → dom 𝑔 = 𝑂)
4342adantrr 717 . . . . . . . . . 10 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → dom 𝑔 = 𝑂)
4440, 43sseqtrid 3939 . . . . . . . . 9 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ⊆ 𝑂)
45 simprr 773 . . . . . . . . 9 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ∈ Fin)
46 elfpw 8912 . . . . . . . . 9 ((𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin) ↔ ((𝑔 “ {1}) ⊆ 𝑂 ∧ (𝑔 “ {1}) ∈ Fin))
4744, 45, 46sylanbrc 586 . . . . . . . 8 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin))
48 indpreima 31576 . . . . . . . . . . 11 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → 𝑔 = ((𝟭‘𝑂)‘(𝑔 “ {1})))
4948eqcomd 2745 . . . . . . . . . 10 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
5041, 49syldan 594 . . . . . . . . 9 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑m 𝑂)) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
5150adantrr 717 . . . . . . . 8 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
52 fveqeq2 6696 . . . . . . . . 9 (𝑎 = (𝑔 “ {1}) → (((𝟭‘𝑂)‘𝑎) = 𝑔 ↔ ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔))
5352rspcev 3529 . . . . . . . 8 (((𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin) ∧ ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔)
5447, 51, 53syl2anc 587 . . . . . . 7 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔)
5554ex 416 . . . . . 6 (𝑂𝑉 → ((𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
5639, 55impbid 215 . . . . 5 (𝑂𝑉 → (∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔 ↔ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
571, 8syl 17 . . . . . 6 (𝑂𝑉 → (𝟭‘𝑂) Fn 𝒫 𝑂)
58 fvelimab 6754 . . . . . 6 (((𝟭‘𝑂) Fn 𝒫 𝑂 ∧ (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂) → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
5957, 4, 58sylancl 589 . . . . 5 (𝑂𝑉 → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
60 cnveq 5726 . . . . . . . . 9 (𝑓 = 𝑔𝑓 = 𝑔)
6160imaeq1d 5912 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓 “ {1}) = (𝑔 “ {1}))
6261eleq1d 2818 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓 “ {1}) ∈ Fin ↔ (𝑔 “ {1}) ∈ Fin))
6362elrab 3593 . . . . . 6 (𝑔 ∈ {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin} ↔ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin))
6463a1i 11 . . . . 5 (𝑂𝑉 → (𝑔 ∈ {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin} ↔ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
6556, 59, 643bitr4d 314 . . . 4 (𝑂𝑉 → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ 𝑔 ∈ {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin}))
6665eqrdv 2737 . . 3 (𝑂𝑉 → ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) = {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
6712, 13, 66f1oeq123d 6625 . 2 (𝑂𝑉 → (((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin}))
686, 67mpbid 235 1 (𝑂𝑉 → ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wrex 3055  {crab 3058  Vcvv 3400  cin 3852  wss 3853  𝒫 cpw 4498  {csn 4526  {cpr 4528  ccnv 5534  dom cdm 5535  cres 5537  cima 5538   Fn wfn 6345  wf 6346  1-1wf1 6347  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7183  m cmap 8450  Fincfn 8568  0cc0 10628  1c1 10629  𝟭cind 31561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-i2m1 10696  ax-1ne0 10697  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7186  df-oprab 7187  df-mpo 7188  df-map 8452  df-ind 31562
This theorem is referenced by:  eulerpartgbij  31922
  Copyright terms: Public domain W3C validator