Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf1ofs Structured version   Visualization version   GIF version

Theorem indf1ofs 31184
Description: The bijection between finite subsets and the indicator functions with finite support. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
indf1ofs (𝑂𝑉 → ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
Distinct variable group:   𝑓,𝑂
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem indf1ofs
Dummy variables 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indf1o 31182 . . . 4 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))
2 f1of1 6607 . . . 4 ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂) → (𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑m 𝑂))
31, 2syl 17 . . 3 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑m 𝑂))
4 inss1 4202 . . 3 (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂
5 f1ores 6622 . . 3 (((𝟭‘𝑂):𝒫 𝑂1-1→({0, 1} ↑m 𝑂) ∧ (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂) → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)))
63, 4, 5sylancl 586 . 2 (𝑂𝑉 → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)))
7 resres 5859 . . . 4 (((𝟭‘𝑂) ↾ 𝒫 𝑂) ↾ Fin) = ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin))
8 f1ofn 6609 . . . . . 6 ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂) → (𝟭‘𝑂) Fn 𝒫 𝑂)
9 fnresdm 6459 . . . . . 6 ((𝟭‘𝑂) Fn 𝒫 𝑂 → ((𝟭‘𝑂) ↾ 𝒫 𝑂) = (𝟭‘𝑂))
101, 8, 93syl 18 . . . . 5 (𝑂𝑉 → ((𝟭‘𝑂) ↾ 𝒫 𝑂) = (𝟭‘𝑂))
1110reseq1d 5845 . . . 4 (𝑂𝑉 → (((𝟭‘𝑂) ↾ 𝒫 𝑂) ↾ Fin) = ((𝟭‘𝑂) ↾ Fin))
127, 11syl5eqr 2867 . . 3 (𝑂𝑉 → ((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)) = ((𝟭‘𝑂) ↾ Fin))
13 eqidd 2819 . . 3 (𝑂𝑉 → (𝒫 𝑂 ∩ Fin) = (𝒫 𝑂 ∩ Fin))
14 simpll 763 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑂𝑉)
15 simpr 485 . . . . . . . . . . . . . 14 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ (𝒫 𝑂 ∩ Fin))
164, 15sseldi 3962 . . . . . . . . . . . . 13 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ 𝒫 𝑂)
1716elpwid 4549 . . . . . . . . . . . 12 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎𝑂)
18 indf 31173 . . . . . . . . . . . 12 ((𝑂𝑉𝑎𝑂) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
1917, 18syldan 591 . . . . . . . . . . 11 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
2019adantr 481 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1})
21 simpr 485 . . . . . . . . . . 11 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎) = 𝑔)
2221feq1d 6492 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎):𝑂⟶{0, 1} ↔ 𝑔:𝑂⟶{0, 1}))
2320, 22mpbid 233 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑔:𝑂⟶{0, 1})
24 prex 5323 . . . . . . . . . . 11 {0, 1} ∈ V
25 elmapg 8408 . . . . . . . . . . 11 (({0, 1} ∈ V ∧ 𝑂𝑉) → (𝑔 ∈ ({0, 1} ↑m 𝑂) ↔ 𝑔:𝑂⟶{0, 1}))
2624, 25mpan 686 . . . . . . . . . 10 (𝑂𝑉 → (𝑔 ∈ ({0, 1} ↑m 𝑂) ↔ 𝑔:𝑂⟶{0, 1}))
2726biimpar 478 . . . . . . . . 9 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → 𝑔 ∈ ({0, 1} ↑m 𝑂))
2814, 23, 27syl2anc 584 . . . . . . . 8 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → 𝑔 ∈ ({0, 1} ↑m 𝑂))
2921cnveqd 5739 . . . . . . . . . 10 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → ((𝟭‘𝑂)‘𝑎) = 𝑔)
3029imaeq1d 5921 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎) “ {1}) = (𝑔 “ {1}))
31 indpi1 31178 . . . . . . . . . . . 12 ((𝑂𝑉𝑎𝑂) → (((𝟭‘𝑂)‘𝑎) “ {1}) = 𝑎)
3217, 31syldan 591 . . . . . . . . . . 11 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) “ {1}) = 𝑎)
33 inss2 4203 . . . . . . . . . . . 12 (𝒫 𝑂 ∩ Fin) ⊆ Fin
3433, 15sseldi 3962 . . . . . . . . . . 11 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → 𝑎 ∈ Fin)
3532, 34eqeltrd 2910 . . . . . . . . . 10 ((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) → (((𝟭‘𝑂)‘𝑎) “ {1}) ∈ Fin)
3635adantr 481 . . . . . . . . 9 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (((𝟭‘𝑂)‘𝑎) “ {1}) ∈ Fin)
3730, 36eqeltrrd 2911 . . . . . . . 8 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (𝑔 “ {1}) ∈ Fin)
3828, 37jca 512 . . . . . . 7 (((𝑂𝑉𝑎 ∈ (𝒫 𝑂 ∩ Fin)) ∧ ((𝟭‘𝑂)‘𝑎) = 𝑔) → (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin))
3938rexlimdva2 3284 . . . . . 6 (𝑂𝑉 → (∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔 → (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
40 cnvimass 5942 . . . . . . . . . 10 (𝑔 “ {1}) ⊆ dom 𝑔
4126biimpa 477 . . . . . . . . . . . 12 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑m 𝑂)) → 𝑔:𝑂⟶{0, 1})
4241fdmd 6516 . . . . . . . . . . 11 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑m 𝑂)) → dom 𝑔 = 𝑂)
4342adantrr 713 . . . . . . . . . 10 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → dom 𝑔 = 𝑂)
4440, 43sseqtrid 4016 . . . . . . . . 9 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ⊆ 𝑂)
45 simprr 769 . . . . . . . . 9 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ∈ Fin)
46 elfpw 8814 . . . . . . . . 9 ((𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin) ↔ ((𝑔 “ {1}) ⊆ 𝑂 ∧ (𝑔 “ {1}) ∈ Fin))
4744, 45, 46sylanbrc 583 . . . . . . . 8 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → (𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin))
48 indpreima 31183 . . . . . . . . . . 11 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → 𝑔 = ((𝟭‘𝑂)‘(𝑔 “ {1})))
4948eqcomd 2824 . . . . . . . . . 10 ((𝑂𝑉𝑔:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
5041, 49syldan 591 . . . . . . . . 9 ((𝑂𝑉𝑔 ∈ ({0, 1} ↑m 𝑂)) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
5150adantrr 713 . . . . . . . 8 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔)
52 fveqeq2 6672 . . . . . . . . 9 (𝑎 = (𝑔 “ {1}) → (((𝟭‘𝑂)‘𝑎) = 𝑔 ↔ ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔))
5352rspcev 3620 . . . . . . . 8 (((𝑔 “ {1}) ∈ (𝒫 𝑂 ∩ Fin) ∧ ((𝟭‘𝑂)‘(𝑔 “ {1})) = 𝑔) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔)
5447, 51, 53syl2anc 584 . . . . . . 7 ((𝑂𝑉 ∧ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔)
5554ex 413 . . . . . 6 (𝑂𝑉 → ((𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin) → ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
5639, 55impbid 213 . . . . 5 (𝑂𝑉 → (∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔 ↔ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
571, 8syl 17 . . . . . 6 (𝑂𝑉 → (𝟭‘𝑂) Fn 𝒫 𝑂)
58 fvelimab 6730 . . . . . 6 (((𝟭‘𝑂) Fn 𝒫 𝑂 ∧ (𝒫 𝑂 ∩ Fin) ⊆ 𝒫 𝑂) → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
5957, 4, 58sylancl 586 . . . . 5 (𝑂𝑉 → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ∃𝑎 ∈ (𝒫 𝑂 ∩ Fin)((𝟭‘𝑂)‘𝑎) = 𝑔))
60 cnveq 5737 . . . . . . . . 9 (𝑓 = 𝑔𝑓 = 𝑔)
6160imaeq1d 5921 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓 “ {1}) = (𝑔 “ {1}))
6261eleq1d 2894 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓 “ {1}) ∈ Fin ↔ (𝑔 “ {1}) ∈ Fin))
6362elrab 3677 . . . . . 6 (𝑔 ∈ {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin} ↔ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin))
6463a1i 11 . . . . 5 (𝑂𝑉 → (𝑔 ∈ {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin} ↔ (𝑔 ∈ ({0, 1} ↑m 𝑂) ∧ (𝑔 “ {1}) ∈ Fin)))
6556, 59, 643bitr4d 312 . . . 4 (𝑂𝑉 → (𝑔 ∈ ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ 𝑔 ∈ {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin}))
6665eqrdv 2816 . . 3 (𝑂𝑉 → ((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) = {𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
6712, 13, 66f1oeq123d 6603 . 2 (𝑂𝑉 → (((𝟭‘𝑂) ↾ (𝒫 𝑂 ∩ Fin)):(𝒫 𝑂 ∩ Fin)–1-1-onto→((𝟭‘𝑂) “ (𝒫 𝑂 ∩ Fin)) ↔ ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin}))
686, 67mpbid 233 1 (𝑂𝑉 → ((𝟭‘𝑂) ↾ Fin):(𝒫 𝑂 ∩ Fin)–1-1-onto→{𝑓 ∈ ({0, 1} ↑m 𝑂) ∣ (𝑓 “ {1}) ∈ Fin})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wrex 3136  {crab 3139  Vcvv 3492  cin 3932  wss 3933  𝒫 cpw 4535  {csn 4557  {cpr 4559  ccnv 5547  dom cdm 5548  cres 5550  cima 5551   Fn wfn 6343  wf 6344  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  m cmap 8395  Fincfn 8497  0cc0 10525  1c1 10526  𝟭cind 31168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-i2m1 10593  ax-1ne0 10594  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8397  df-ind 31169
This theorem is referenced by:  eulerpartgbij  31529
  Copyright terms: Public domain W3C validator