![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1f1lem | Structured version Visualization version GIF version |
Description: Lemma for i1f1 25431 and itg11 25432. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
i1f1.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) |
Ref | Expression |
---|---|
i1f1lem | ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 11214 | . . . . . 6 ⊢ 1 ∈ V | |
2 | 1 | prid2 4767 | . . . . 5 ⊢ 1 ∈ {0, 1} |
3 | c0ex 11212 | . . . . . 6 ⊢ 0 ∈ V | |
4 | 3 | prid1 4766 | . . . . 5 ⊢ 0 ∈ {0, 1} |
5 | 2, 4 | ifcli 4575 | . . . 4 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
6 | 5 | rgenw 3065 | . . 3 ⊢ ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
7 | i1f1.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) | |
8 | 7 | fmpt 7111 | . . 3 ⊢ (∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} ↔ 𝐹:ℝ⟶{0, 1}) |
9 | 6, 8 | mpbi 229 | . 2 ⊢ 𝐹:ℝ⟶{0, 1} |
10 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
11 | 10, 7 | fmptd 7115 | . . . . . 6 ⊢ (𝐴 ∈ dom vol → 𝐹:ℝ⟶{0, 1}) |
12 | ffn 6717 | . . . . . 6 ⊢ (𝐹:ℝ⟶{0, 1} → 𝐹 Fn ℝ) | |
13 | elpreima 7059 | . . . . . 6 ⊢ (𝐹 Fn ℝ → (𝑦 ∈ (◡𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑦) ∈ {1}))) | |
14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ (◡𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑦) ∈ {1}))) |
15 | fvex 6904 | . . . . . . . 8 ⊢ (𝐹‘𝑦) ∈ V | |
16 | 15 | elsn 4643 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ∈ {1} ↔ (𝐹‘𝑦) = 1) |
17 | eleq1w 2816 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | 17 | ifbid 4551 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → if(𝑥 ∈ 𝐴, 1, 0) = if(𝑦 ∈ 𝐴, 1, 0)) |
19 | 1, 3 | ifex 4578 | . . . . . . . . . 10 ⊢ if(𝑦 ∈ 𝐴, 1, 0) ∈ V |
20 | 18, 7, 19 | fvmpt 6998 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (𝐹‘𝑦) = if(𝑦 ∈ 𝐴, 1, 0)) |
21 | 20 | eqeq1d 2734 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → ((𝐹‘𝑦) = 1 ↔ if(𝑦 ∈ 𝐴, 1, 0) = 1)) |
22 | 0ne1 12287 | . . . . . . . . . . 11 ⊢ 0 ≠ 1 | |
23 | iffalse 4537 | . . . . . . . . . . . . 13 ⊢ (¬ 𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, 1, 0) = 0) | |
24 | 23 | eqeq1d 2734 | . . . . . . . . . . . 12 ⊢ (¬ 𝑦 ∈ 𝐴 → (if(𝑦 ∈ 𝐴, 1, 0) = 1 ↔ 0 = 1)) |
25 | 24 | necon3bbid 2978 | . . . . . . . . . . 11 ⊢ (¬ 𝑦 ∈ 𝐴 → (¬ if(𝑦 ∈ 𝐴, 1, 0) = 1 ↔ 0 ≠ 1)) |
26 | 22, 25 | mpbiri 257 | . . . . . . . . . 10 ⊢ (¬ 𝑦 ∈ 𝐴 → ¬ if(𝑦 ∈ 𝐴, 1, 0) = 1) |
27 | 26 | con4i 114 | . . . . . . . . 9 ⊢ (if(𝑦 ∈ 𝐴, 1, 0) = 1 → 𝑦 ∈ 𝐴) |
28 | iftrue 4534 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, 1, 0) = 1) | |
29 | 27, 28 | impbii 208 | . . . . . . . 8 ⊢ (if(𝑦 ∈ 𝐴, 1, 0) = 1 ↔ 𝑦 ∈ 𝐴) |
30 | 21, 29 | bitrdi 286 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ((𝐹‘𝑦) = 1 ↔ 𝑦 ∈ 𝐴)) |
31 | 16, 30 | bitrid 282 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((𝐹‘𝑦) ∈ {1} ↔ 𝑦 ∈ 𝐴)) |
32 | 31 | pm5.32i 575 | . . . . 5 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑦) ∈ {1}) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴)) |
33 | 14, 32 | bitrdi 286 | . . . 4 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ (◡𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
34 | mblss 25272 | . . . . . 6 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
35 | 34 | sseld 3981 | . . . . 5 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
36 | 35 | pm4.71rd 563 | . . . 4 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
37 | 33, 36 | bitr4d 281 | . . 3 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ (◡𝐹 “ {1}) ↔ 𝑦 ∈ 𝐴)) |
38 | 37 | eqrdv 2730 | . 2 ⊢ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴) |
39 | 9, 38 | pm3.2i 471 | 1 ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ifcif 4528 {csn 4628 {cpr 4630 ↦ cmpt 5231 ◡ccnv 5675 dom cdm 5676 “ cima 5679 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 ℝcr 11111 0cc0 11112 1c1 11113 volcvol 25204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-ico 13334 df-icc 13335 df-fz 13489 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-ovol 25205 df-vol 25206 |
This theorem is referenced by: i1f1 25431 itg11 25432 |
Copyright terms: Public domain | W3C validator |