Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > i1f1lem | Structured version Visualization version GIF version |
Description: Lemma for i1f1 24759 and itg11 24760. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
i1f1.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) |
Ref | Expression |
---|---|
i1f1lem | ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 10902 | . . . . . 6 ⊢ 1 ∈ V | |
2 | 1 | prid2 4696 | . . . . 5 ⊢ 1 ∈ {0, 1} |
3 | c0ex 10900 | . . . . . 6 ⊢ 0 ∈ V | |
4 | 3 | prid1 4695 | . . . . 5 ⊢ 0 ∈ {0, 1} |
5 | 2, 4 | ifcli 4503 | . . . 4 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
6 | 5 | rgenw 3075 | . . 3 ⊢ ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
7 | i1f1.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) | |
8 | 7 | fmpt 6966 | . . 3 ⊢ (∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} ↔ 𝐹:ℝ⟶{0, 1}) |
9 | 6, 8 | mpbi 229 | . 2 ⊢ 𝐹:ℝ⟶{0, 1} |
10 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
11 | 10, 7 | fmptd 6970 | . . . . . 6 ⊢ (𝐴 ∈ dom vol → 𝐹:ℝ⟶{0, 1}) |
12 | ffn 6584 | . . . . . 6 ⊢ (𝐹:ℝ⟶{0, 1} → 𝐹 Fn ℝ) | |
13 | elpreima 6917 | . . . . . 6 ⊢ (𝐹 Fn ℝ → (𝑦 ∈ (◡𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑦) ∈ {1}))) | |
14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ (◡𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑦) ∈ {1}))) |
15 | fvex 6769 | . . . . . . . 8 ⊢ (𝐹‘𝑦) ∈ V | |
16 | 15 | elsn 4573 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ∈ {1} ↔ (𝐹‘𝑦) = 1) |
17 | eleq1w 2821 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | 17 | ifbid 4479 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → if(𝑥 ∈ 𝐴, 1, 0) = if(𝑦 ∈ 𝐴, 1, 0)) |
19 | 1, 3 | ifex 4506 | . . . . . . . . . 10 ⊢ if(𝑦 ∈ 𝐴, 1, 0) ∈ V |
20 | 18, 7, 19 | fvmpt 6857 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (𝐹‘𝑦) = if(𝑦 ∈ 𝐴, 1, 0)) |
21 | 20 | eqeq1d 2740 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → ((𝐹‘𝑦) = 1 ↔ if(𝑦 ∈ 𝐴, 1, 0) = 1)) |
22 | 0ne1 11974 | . . . . . . . . . . 11 ⊢ 0 ≠ 1 | |
23 | iffalse 4465 | . . . . . . . . . . . . 13 ⊢ (¬ 𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, 1, 0) = 0) | |
24 | 23 | eqeq1d 2740 | . . . . . . . . . . . 12 ⊢ (¬ 𝑦 ∈ 𝐴 → (if(𝑦 ∈ 𝐴, 1, 0) = 1 ↔ 0 = 1)) |
25 | 24 | necon3bbid 2980 | . . . . . . . . . . 11 ⊢ (¬ 𝑦 ∈ 𝐴 → (¬ if(𝑦 ∈ 𝐴, 1, 0) = 1 ↔ 0 ≠ 1)) |
26 | 22, 25 | mpbiri 257 | . . . . . . . . . 10 ⊢ (¬ 𝑦 ∈ 𝐴 → ¬ if(𝑦 ∈ 𝐴, 1, 0) = 1) |
27 | 26 | con4i 114 | . . . . . . . . 9 ⊢ (if(𝑦 ∈ 𝐴, 1, 0) = 1 → 𝑦 ∈ 𝐴) |
28 | iftrue 4462 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, 1, 0) = 1) | |
29 | 27, 28 | impbii 208 | . . . . . . . 8 ⊢ (if(𝑦 ∈ 𝐴, 1, 0) = 1 ↔ 𝑦 ∈ 𝐴) |
30 | 21, 29 | bitrdi 286 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ((𝐹‘𝑦) = 1 ↔ 𝑦 ∈ 𝐴)) |
31 | 16, 30 | syl5bb 282 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((𝐹‘𝑦) ∈ {1} ↔ 𝑦 ∈ 𝐴)) |
32 | 31 | pm5.32i 574 | . . . . 5 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑦) ∈ {1}) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴)) |
33 | 14, 32 | bitrdi 286 | . . . 4 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ (◡𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
34 | mblss 24600 | . . . . . 6 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
35 | 34 | sseld 3916 | . . . . 5 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
36 | 35 | pm4.71rd 562 | . . . 4 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
37 | 33, 36 | bitr4d 281 | . . 3 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ (◡𝐹 “ {1}) ↔ 𝑦 ∈ 𝐴)) |
38 | 37 | eqrdv 2736 | . 2 ⊢ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴) |
39 | 9, 38 | pm3.2i 470 | 1 ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ifcif 4456 {csn 4558 {cpr 4560 ↦ cmpt 5153 ◡ccnv 5579 dom cdm 5580 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 ℝcr 10801 0cc0 10802 1c1 10803 volcvol 24532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-icc 13015 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-ovol 24533 df-vol 24534 |
This theorem is referenced by: i1f1 24759 itg11 24760 |
Copyright terms: Public domain | W3C validator |