| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1f1lem | Structured version Visualization version GIF version | ||
| Description: Lemma for i1f1 25725 and itg11 25726. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1f1.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) |
| Ref | Expression |
|---|---|
| i1f1lem | ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11257 | . . . . . 6 ⊢ 1 ∈ V | |
| 2 | 1 | prid2 4763 | . . . . 5 ⊢ 1 ∈ {0, 1} |
| 3 | c0ex 11255 | . . . . . 6 ⊢ 0 ∈ V | |
| 4 | 3 | prid1 4762 | . . . . 5 ⊢ 0 ∈ {0, 1} |
| 5 | 2, 4 | ifcli 4573 | . . . 4 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
| 6 | 5 | rgenw 3065 | . . 3 ⊢ ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
| 7 | i1f1.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) | |
| 8 | 7 | fmpt 7130 | . . 3 ⊢ (∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} ↔ 𝐹:ℝ⟶{0, 1}) |
| 9 | 6, 8 | mpbi 230 | . 2 ⊢ 𝐹:ℝ⟶{0, 1} |
| 10 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
| 11 | 10, 7 | fmptd 7134 | . . . . . 6 ⊢ (𝐴 ∈ dom vol → 𝐹:ℝ⟶{0, 1}) |
| 12 | ffn 6736 | . . . . . 6 ⊢ (𝐹:ℝ⟶{0, 1} → 𝐹 Fn ℝ) | |
| 13 | elpreima 7078 | . . . . . 6 ⊢ (𝐹 Fn ℝ → (𝑦 ∈ (◡𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑦) ∈ {1}))) | |
| 14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ (◡𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑦) ∈ {1}))) |
| 15 | fvex 6919 | . . . . . . . 8 ⊢ (𝐹‘𝑦) ∈ V | |
| 16 | 15 | elsn 4641 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ∈ {1} ↔ (𝐹‘𝑦) = 1) |
| 17 | eleq1w 2824 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 18 | 17 | ifbid 4549 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → if(𝑥 ∈ 𝐴, 1, 0) = if(𝑦 ∈ 𝐴, 1, 0)) |
| 19 | 1, 3 | ifex 4576 | . . . . . . . . . 10 ⊢ if(𝑦 ∈ 𝐴, 1, 0) ∈ V |
| 20 | 18, 7, 19 | fvmpt 7016 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (𝐹‘𝑦) = if(𝑦 ∈ 𝐴, 1, 0)) |
| 21 | 20 | eqeq1d 2739 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → ((𝐹‘𝑦) = 1 ↔ if(𝑦 ∈ 𝐴, 1, 0) = 1)) |
| 22 | 0ne1 12337 | . . . . . . . . . . 11 ⊢ 0 ≠ 1 | |
| 23 | iffalse 4534 | . . . . . . . . . . . . 13 ⊢ (¬ 𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, 1, 0) = 0) | |
| 24 | 23 | eqeq1d 2739 | . . . . . . . . . . . 12 ⊢ (¬ 𝑦 ∈ 𝐴 → (if(𝑦 ∈ 𝐴, 1, 0) = 1 ↔ 0 = 1)) |
| 25 | 24 | necon3bbid 2978 | . . . . . . . . . . 11 ⊢ (¬ 𝑦 ∈ 𝐴 → (¬ if(𝑦 ∈ 𝐴, 1, 0) = 1 ↔ 0 ≠ 1)) |
| 26 | 22, 25 | mpbiri 258 | . . . . . . . . . 10 ⊢ (¬ 𝑦 ∈ 𝐴 → ¬ if(𝑦 ∈ 𝐴, 1, 0) = 1) |
| 27 | 26 | con4i 114 | . . . . . . . . 9 ⊢ (if(𝑦 ∈ 𝐴, 1, 0) = 1 → 𝑦 ∈ 𝐴) |
| 28 | iftrue 4531 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, 1, 0) = 1) | |
| 29 | 27, 28 | impbii 209 | . . . . . . . 8 ⊢ (if(𝑦 ∈ 𝐴, 1, 0) = 1 ↔ 𝑦 ∈ 𝐴) |
| 30 | 21, 29 | bitrdi 287 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ((𝐹‘𝑦) = 1 ↔ 𝑦 ∈ 𝐴)) |
| 31 | 16, 30 | bitrid 283 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((𝐹‘𝑦) ∈ {1} ↔ 𝑦 ∈ 𝐴)) |
| 32 | 31 | pm5.32i 574 | . . . . 5 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑦) ∈ {1}) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴)) |
| 33 | 14, 32 | bitrdi 287 | . . . 4 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ (◡𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
| 34 | mblss 25566 | . . . . . 6 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
| 35 | 34 | sseld 3982 | . . . . 5 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
| 36 | 35 | pm4.71rd 562 | . . . 4 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
| 37 | 33, 36 | bitr4d 282 | . . 3 ⊢ (𝐴 ∈ dom vol → (𝑦 ∈ (◡𝐹 “ {1}) ↔ 𝑦 ∈ 𝐴)) |
| 38 | 37 | eqrdv 2735 | . 2 ⊢ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴) |
| 39 | 9, 38 | pm3.2i 470 | 1 ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ifcif 4525 {csn 4626 {cpr 4628 ↦ cmpt 5225 ◡ccnv 5684 dom cdm 5685 “ cima 5688 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 ℝcr 11154 0cc0 11155 1c1 11156 volcvol 25498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-icc 13394 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-ovol 25499 df-vol 25500 |
| This theorem is referenced by: i1f1 25725 itg11 25726 |
| Copyright terms: Public domain | W3C validator |