MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1f1lem Structured version   Visualization version   GIF version

Theorem i1f1lem 24224
Description: Lemma for i1f1 24225 and itg11 24226. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypothesis
Ref Expression
i1f1.1 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
Assertion
Ref Expression
i1f1lem (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem i1f1lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1ex 10631 . . . . . 6 1 ∈ V
21prid2 4698 . . . . 5 1 ∈ {0, 1}
3 c0ex 10629 . . . . . 6 0 ∈ V
43prid1 4697 . . . . 5 0 ∈ {0, 1}
52, 4ifcli 4516 . . . 4 if(𝑥𝐴, 1, 0) ∈ {0, 1}
65rgenw 3155 . . 3 𝑥 ∈ ℝ if(𝑥𝐴, 1, 0) ∈ {0, 1}
7 i1f1.1 . . . 4 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
87fmpt 6872 . . 3 (∀𝑥 ∈ ℝ if(𝑥𝐴, 1, 0) ∈ {0, 1} ↔ 𝐹:ℝ⟶{0, 1})
96, 8mpbi 231 . 2 𝐹:ℝ⟶{0, 1}
105a1i 11 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ {0, 1})
1110, 7fmptd 6876 . . . . . 6 (𝐴 ∈ dom vol → 𝐹:ℝ⟶{0, 1})
12 ffn 6513 . . . . . 6 (𝐹:ℝ⟶{0, 1} → 𝐹 Fn ℝ)
13 elpreima 6826 . . . . . 6 (𝐹 Fn ℝ → (𝑦 ∈ (𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ {1})))
1411, 12, 133syl 18 . . . . 5 (𝐴 ∈ dom vol → (𝑦 ∈ (𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ {1})))
15 fvex 6682 . . . . . . . 8 (𝐹𝑦) ∈ V
1615elsn 4579 . . . . . . 7 ((𝐹𝑦) ∈ {1} ↔ (𝐹𝑦) = 1)
17 eleq1w 2900 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817ifbid 4492 . . . . . . . . . 10 (𝑥 = 𝑦 → if(𝑥𝐴, 1, 0) = if(𝑦𝐴, 1, 0))
191, 3ifex 4518 . . . . . . . . . 10 if(𝑦𝐴, 1, 0) ∈ V
2018, 7, 19fvmpt 6767 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
2120eqeq1d 2828 . . . . . . . 8 (𝑦 ∈ ℝ → ((𝐹𝑦) = 1 ↔ if(𝑦𝐴, 1, 0) = 1))
22 0ne1 11702 . . . . . . . . . . 11 0 ≠ 1
23 iffalse 4479 . . . . . . . . . . . . 13 𝑦𝐴 → if(𝑦𝐴, 1, 0) = 0)
2423eqeq1d 2828 . . . . . . . . . . . 12 𝑦𝐴 → (if(𝑦𝐴, 1, 0) = 1 ↔ 0 = 1))
2524necon3bbid 3058 . . . . . . . . . . 11 𝑦𝐴 → (¬ if(𝑦𝐴, 1, 0) = 1 ↔ 0 ≠ 1))
2622, 25mpbiri 259 . . . . . . . . . 10 𝑦𝐴 → ¬ if(𝑦𝐴, 1, 0) = 1)
2726con4i 114 . . . . . . . . 9 (if(𝑦𝐴, 1, 0) = 1 → 𝑦𝐴)
28 iftrue 4476 . . . . . . . . 9 (𝑦𝐴 → if(𝑦𝐴, 1, 0) = 1)
2927, 28impbii 210 . . . . . . . 8 (if(𝑦𝐴, 1, 0) = 1 ↔ 𝑦𝐴)
3021, 29syl6bb 288 . . . . . . 7 (𝑦 ∈ ℝ → ((𝐹𝑦) = 1 ↔ 𝑦𝐴))
3116, 30syl5bb 284 . . . . . 6 (𝑦 ∈ ℝ → ((𝐹𝑦) ∈ {1} ↔ 𝑦𝐴))
3231pm5.32i 575 . . . . 5 ((𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ {1}) ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴))
3314, 32syl6bb 288 . . . 4 (𝐴 ∈ dom vol → (𝑦 ∈ (𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
34 mblss 24066 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3534sseld 3970 . . . . 5 (𝐴 ∈ dom vol → (𝑦𝐴𝑦 ∈ ℝ))
3635pm4.71rd 563 . . . 4 (𝐴 ∈ dom vol → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
3733, 36bitr4d 283 . . 3 (𝐴 ∈ dom vol → (𝑦 ∈ (𝐹 “ {1}) ↔ 𝑦𝐴))
3837eqrdv 2824 . 2 (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴)
399, 38pm3.2i 471 1 (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3021  wral 3143  ifcif 4470  {csn 4564  {cpr 4566  cmpt 5143  ccnv 5553  dom cdm 5554  cima 5557   Fn wfn 6349  wf 6350  cfv 6354  cr 10530  0cc0 10531  1c1 10532  volcvol 23998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12385  df-ico 12739  df-icc 12740  df-fz 12888  df-seq 13365  df-exp 13425  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-ovol 23999  df-vol 24000
This theorem is referenced by:  i1f1  24225  itg11  24226
  Copyright terms: Public domain W3C validator