MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1f1lem Structured version   Visualization version   GIF version

Theorem i1f1lem 25620
Description: Lemma for i1f1 25621 and itg11 25622. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypothesis
Ref Expression
i1f1.1 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
Assertion
Ref Expression
i1f1lem (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem i1f1lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1ex 11117 . . . . . 6 1 ∈ V
21prid2 4717 . . . . 5 1 ∈ {0, 1}
3 c0ex 11115 . . . . . 6 0 ∈ V
43prid1 4716 . . . . 5 0 ∈ {0, 1}
52, 4ifcli 4524 . . . 4 if(𝑥𝐴, 1, 0) ∈ {0, 1}
65rgenw 3052 . . 3 𝑥 ∈ ℝ if(𝑥𝐴, 1, 0) ∈ {0, 1}
7 i1f1.1 . . . 4 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
87fmpt 7051 . . 3 (∀𝑥 ∈ ℝ if(𝑥𝐴, 1, 0) ∈ {0, 1} ↔ 𝐹:ℝ⟶{0, 1})
96, 8mpbi 230 . 2 𝐹:ℝ⟶{0, 1}
105a1i 11 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ {0, 1})
1110, 7fmptd 7055 . . . . . 6 (𝐴 ∈ dom vol → 𝐹:ℝ⟶{0, 1})
12 ffn 6658 . . . . . 6 (𝐹:ℝ⟶{0, 1} → 𝐹 Fn ℝ)
13 elpreima 6999 . . . . . 6 (𝐹 Fn ℝ → (𝑦 ∈ (𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ {1})))
1411, 12, 133syl 18 . . . . 5 (𝐴 ∈ dom vol → (𝑦 ∈ (𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ {1})))
15 fvex 6843 . . . . . . . 8 (𝐹𝑦) ∈ V
1615elsn 4592 . . . . . . 7 ((𝐹𝑦) ∈ {1} ↔ (𝐹𝑦) = 1)
17 eleq1w 2816 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817ifbid 4500 . . . . . . . . . 10 (𝑥 = 𝑦 → if(𝑥𝐴, 1, 0) = if(𝑦𝐴, 1, 0))
191, 3ifex 4527 . . . . . . . . . 10 if(𝑦𝐴, 1, 0) ∈ V
2018, 7, 19fvmpt 6937 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
2120eqeq1d 2735 . . . . . . . 8 (𝑦 ∈ ℝ → ((𝐹𝑦) = 1 ↔ if(𝑦𝐴, 1, 0) = 1))
22 0ne1 12205 . . . . . . . . . . 11 0 ≠ 1
23 iffalse 4485 . . . . . . . . . . . . 13 𝑦𝐴 → if(𝑦𝐴, 1, 0) = 0)
2423eqeq1d 2735 . . . . . . . . . . . 12 𝑦𝐴 → (if(𝑦𝐴, 1, 0) = 1 ↔ 0 = 1))
2524necon3bbid 2966 . . . . . . . . . . 11 𝑦𝐴 → (¬ if(𝑦𝐴, 1, 0) = 1 ↔ 0 ≠ 1))
2622, 25mpbiri 258 . . . . . . . . . 10 𝑦𝐴 → ¬ if(𝑦𝐴, 1, 0) = 1)
2726con4i 114 . . . . . . . . 9 (if(𝑦𝐴, 1, 0) = 1 → 𝑦𝐴)
28 iftrue 4482 . . . . . . . . 9 (𝑦𝐴 → if(𝑦𝐴, 1, 0) = 1)
2927, 28impbii 209 . . . . . . . 8 (if(𝑦𝐴, 1, 0) = 1 ↔ 𝑦𝐴)
3021, 29bitrdi 287 . . . . . . 7 (𝑦 ∈ ℝ → ((𝐹𝑦) = 1 ↔ 𝑦𝐴))
3116, 30bitrid 283 . . . . . 6 (𝑦 ∈ ℝ → ((𝐹𝑦) ∈ {1} ↔ 𝑦𝐴))
3231pm5.32i 574 . . . . 5 ((𝑦 ∈ ℝ ∧ (𝐹𝑦) ∈ {1}) ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴))
3314, 32bitrdi 287 . . . 4 (𝐴 ∈ dom vol → (𝑦 ∈ (𝐹 “ {1}) ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
34 mblss 25462 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3534sseld 3929 . . . . 5 (𝐴 ∈ dom vol → (𝑦𝐴𝑦 ∈ ℝ))
3635pm4.71rd 562 . . . 4 (𝐴 ∈ dom vol → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
3733, 36bitr4d 282 . . 3 (𝐴 ∈ dom vol → (𝑦 ∈ (𝐹 “ {1}) ↔ 𝑦𝐴))
3837eqrdv 2731 . 2 (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴)
399, 38pm3.2i 470 1 (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  ifcif 4476  {csn 4577  {cpr 4579  cmpt 5176  ccnv 5620  dom cdm 5621  cima 5624   Fn wfn 6483  wf 6484  cfv 6488  cr 11014  0cc0 11015  1c1 11016  volcvol 25394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-ico 13255  df-icc 13256  df-fz 13412  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-ovol 25395  df-vol 25396
This theorem is referenced by:  i1f1  25621  itg11  25622
  Copyright terms: Public domain W3C validator