| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcsni | Structured version Visualization version GIF version | ||
| Description: The transitive closure of a singleton. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015.) |
| Ref | Expression |
|---|---|
| tc2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tcsni | ⊢ (TC‘{𝐴}) = ((TC‘𝐴) ∪ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tc2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | 1 | snss 4752 | . . . . 5 ⊢ (𝐴 ∈ 𝑥 ↔ {𝐴} ⊆ 𝑥) |
| 3 | 2 | anbi1i 624 | . . . 4 ⊢ ((𝐴 ∈ 𝑥 ∧ Tr 𝑥) ↔ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)) |
| 4 | 3 | abbii 2797 | . . 3 ⊢ {𝑥 ∣ (𝐴 ∈ 𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)} |
| 5 | 4 | inteqi 4917 | . 2 ⊢ ∩ {𝑥 ∣ (𝐴 ∈ 𝑥 ∧ Tr 𝑥)} = ∩ {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)} |
| 6 | 1 | tc2 9702 | . 2 ⊢ ((TC‘𝐴) ∪ {𝐴}) = ∩ {𝑥 ∣ (𝐴 ∈ 𝑥 ∧ Tr 𝑥)} |
| 7 | snex 5394 | . . 3 ⊢ {𝐴} ∈ V | |
| 8 | tcvalg 9698 | . . 3 ⊢ ({𝐴} ∈ V → (TC‘{𝐴}) = ∩ {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (TC‘{𝐴}) = ∩ {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)} |
| 10 | 5, 6, 9 | 3eqtr4ri 2764 | 1 ⊢ (TC‘{𝐴}) = ((TC‘𝐴) ∪ {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 {csn 4592 ∩ cint 4913 Tr wtr 5217 ‘cfv 6514 TCctc 9696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-tc 9697 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |