![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tcsni | Structured version Visualization version GIF version |
Description: The transitive closure of a singleton. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015.) |
Ref | Expression |
---|---|
tc2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tcsni | ⊢ (TC‘{𝐴}) = ((TC‘𝐴) ∪ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tc2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | 1 | snss 4784 | . . . . 5 ⊢ (𝐴 ∈ 𝑥 ↔ {𝐴} ⊆ 𝑥) |
3 | 2 | anbi1i 622 | . . . 4 ⊢ ((𝐴 ∈ 𝑥 ∧ Tr 𝑥) ↔ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)) |
4 | 3 | abbii 2796 | . . 3 ⊢ {𝑥 ∣ (𝐴 ∈ 𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)} |
5 | 4 | inteqi 4950 | . 2 ⊢ ∩ {𝑥 ∣ (𝐴 ∈ 𝑥 ∧ Tr 𝑥)} = ∩ {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)} |
6 | 1 | tc2 9778 | . 2 ⊢ ((TC‘𝐴) ∪ {𝐴}) = ∩ {𝑥 ∣ (𝐴 ∈ 𝑥 ∧ Tr 𝑥)} |
7 | snex 5429 | . . 3 ⊢ {𝐴} ∈ V | |
8 | tcvalg 9774 | . . 3 ⊢ ({𝐴} ∈ V → (TC‘{𝐴}) = ∩ {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)}) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (TC‘{𝐴}) = ∩ {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)} |
10 | 5, 6, 9 | 3eqtr4ri 2765 | 1 ⊢ (TC‘{𝐴}) = ((TC‘𝐴) ∪ {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 Vcvv 3462 ∪ cun 3944 ⊆ wss 3946 {csn 4623 ∩ cint 4946 Tr wtr 5262 ‘cfv 6546 TCctc 9772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 ax-inf2 9677 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-tc 9773 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |