| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcsni | Structured version Visualization version GIF version | ||
| Description: The transitive closure of a singleton. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015.) |
| Ref | Expression |
|---|---|
| tc2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tcsni | ⊢ (TC‘{𝐴}) = ((TC‘𝐴) ∪ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tc2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | 1 | snss 4757 | . . . . 5 ⊢ (𝐴 ∈ 𝑥 ↔ {𝐴} ⊆ 𝑥) |
| 3 | 2 | anbi1i 624 | . . . 4 ⊢ ((𝐴 ∈ 𝑥 ∧ Tr 𝑥) ↔ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)) |
| 4 | 3 | abbii 2797 | . . 3 ⊢ {𝑥 ∣ (𝐴 ∈ 𝑥 ∧ Tr 𝑥)} = {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)} |
| 5 | 4 | inteqi 4922 | . 2 ⊢ ∩ {𝑥 ∣ (𝐴 ∈ 𝑥 ∧ Tr 𝑥)} = ∩ {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)} |
| 6 | 1 | tc2 9713 | . 2 ⊢ ((TC‘𝐴) ∪ {𝐴}) = ∩ {𝑥 ∣ (𝐴 ∈ 𝑥 ∧ Tr 𝑥)} |
| 7 | snex 5399 | . . 3 ⊢ {𝐴} ∈ V | |
| 8 | tcvalg 9709 | . . 3 ⊢ ({𝐴} ∈ V → (TC‘{𝐴}) = ∩ {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (TC‘{𝐴}) = ∩ {𝑥 ∣ ({𝐴} ⊆ 𝑥 ∧ Tr 𝑥)} |
| 10 | 5, 6, 9 | 3eqtr4ri 2764 | 1 ⊢ (TC‘{𝐴}) = ((TC‘𝐴) ∪ {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3455 ∪ cun 3920 ⊆ wss 3922 {csn 4597 ∩ cint 4918 Tr wtr 5222 ‘cfv 6519 TCctc 9707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 ax-inf2 9612 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-tc 9708 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |