![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonn0hoi | Structured version Visualization version GIF version |
Description: The Lebesgue outer measure of a multidimensional half-open interval when the dimension of the space is nonzero. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
vonn0hoi.x | β’ (π β π β Fin) |
vonn0hoi.n | β’ (π β π β β ) |
vonn0hoi.a | β’ (π β π΄:πβΆβ) |
vonn0hoi.b | β’ (π β π΅:πβΆβ) |
vonn0hoi.i | β’ πΌ = Xπ β π ((π΄βπ)[,)(π΅βπ)) |
Ref | Expression |
---|---|
vonn0hoi | β’ (π β ((volnβπ)βπΌ) = βπ β π (volβ((π΄βπ)[,)(π΅βπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonn0hoi.x | . . 3 β’ (π β π β Fin) | |
2 | vonn0hoi.a | . . 3 β’ (π β π΄:πβΆβ) | |
3 | vonn0hoi.b | . . 3 β’ (π β π΅:πβΆβ) | |
4 | vonn0hoi.i | . . 3 β’ πΌ = Xπ β π ((π΄βπ)[,)(π΅βπ)) | |
5 | eqid 2732 | . . 3 β’ (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) = (π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ)))))) | |
6 | 1, 2, 3, 4, 5 | vonhoi 45462 | . 2 β’ (π β ((volnβπ)βπΌ) = (π΄((π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))))βπ)π΅)) |
7 | vonn0hoi.n | . . 3 β’ (π β π β β ) | |
8 | 5, 1, 7, 2, 3 | hoidmvn0val 45379 | . 2 β’ (π β (π΄((π₯ β Fin β¦ (π β (β βm π₯), π β (β βm π₯) β¦ if(π₯ = β , 0, βπ β π₯ (volβ((πβπ)[,)(πβπ))))))βπ)π΅) = βπ β π (volβ((π΄βπ)[,)(π΅βπ)))) |
9 | 6, 8 | eqtrd 2772 | 1 β’ (π β ((volnβπ)βπΌ) = βπ β π (volβ((π΄βπ)[,)(π΅βπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wne 2940 β c0 4322 ifcif 4528 β¦ cmpt 5231 βΆwf 6539 βcfv 6543 (class class class)co 7411 β cmpo 7413 βm cmap 8822 Xcixp 8893 Fincfn 8941 βcr 11111 0cc0 11112 [,)cico 13328 βcprod 15851 volcvol 24987 volncvoln 45333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cc 10432 ax-ac2 10460 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-omul 8473 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-dju 9898 df-card 9936 df-acn 9939 df-ac 10113 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-q 12935 df-rp 12977 df-xneg 13094 df-xadd 13095 df-xmul 13096 df-ioo 13330 df-ico 13332 df-icc 13333 df-fz 13487 df-fzo 13630 df-fl 13759 df-seq 13969 df-exp 14030 df-hash 14293 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-clim 15434 df-rlim 15435 df-sum 15635 df-prod 15852 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-mulr 17213 df-starv 17214 df-tset 17218 df-ple 17219 df-ds 17221 df-unif 17222 df-rest 17370 df-0g 17389 df-topgen 17391 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-grp 18824 df-minusg 18825 df-subg 19005 df-cmn 19652 df-abl 19653 df-mgp 19990 df-ur 20007 df-ring 20060 df-cring 20061 df-oppr 20154 df-dvdsr 20175 df-unit 20176 df-invr 20206 df-dvr 20219 df-drng 20363 df-psmet 20942 df-xmet 20943 df-met 20944 df-bl 20945 df-mopn 20946 df-cnfld 20951 df-top 22403 df-topon 22420 df-bases 22456 df-cmp 22898 df-ovol 24988 df-vol 24989 df-salg 45104 df-sumge0 45158 df-mea 45245 df-ome 45285 df-caragen 45287 df-ovoln 45332 df-voln 45334 |
This theorem is referenced by: vonhoire 45467 vonioolem1 45475 vonicclem1 45478 |
Copyright terms: Public domain | W3C validator |