Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtycnv Structured version   Visualization version   GIF version

Theorem ismtycnv 37796
Description: The inverse of an isometry is an isometry. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ismtycnv ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))

Proof of Theorem ismtycnv
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 6812 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
21adantr 480 . . . 4 ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → 𝐹:𝑌1-1-onto𝑋)
3 f1ocnvdm 7260 . . . . . . . . . . 11 ((𝐹:𝑋1-1-onto𝑌𝑢𝑌) → (𝐹𝑢) ∈ 𝑋)
43ex 412 . . . . . . . . . 10 (𝐹:𝑋1-1-onto𝑌 → (𝑢𝑌 → (𝐹𝑢) ∈ 𝑋))
5 f1ocnvdm 7260 . . . . . . . . . . 11 ((𝐹:𝑋1-1-onto𝑌𝑣𝑌) → (𝐹𝑣) ∈ 𝑋)
65ex 412 . . . . . . . . . 10 (𝐹:𝑋1-1-onto𝑌 → (𝑣𝑌 → (𝐹𝑣) ∈ 𝑋))
74, 6anim12d 609 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌 → ((𝑢𝑌𝑣𝑌) → ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)))
87adantr 480 . . . . . . . 8 ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → ((𝑢𝑌𝑣𝑌) → ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)))
98imdistani 568 . . . . . . 7 (((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) ∧ ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)))
10 oveq1 7394 . . . . . . . . . . 11 (𝑥 = (𝐹𝑢) → (𝑥𝑀𝑦) = ((𝐹𝑢)𝑀𝑦))
11 fveq2 6858 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑢) → (𝐹𝑥) = (𝐹‘(𝐹𝑢)))
1211oveq1d 7402 . . . . . . . . . . 11 (𝑥 = (𝐹𝑢) → ((𝐹𝑥)𝑁(𝐹𝑦)) = ((𝐹‘(𝐹𝑢))𝑁(𝐹𝑦)))
1310, 12eqeq12d 2745 . . . . . . . . . 10 (𝑥 = (𝐹𝑢) → ((𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) ↔ ((𝐹𝑢)𝑀𝑦) = ((𝐹‘(𝐹𝑢))𝑁(𝐹𝑦))))
14 oveq2 7395 . . . . . . . . . . 11 (𝑦 = (𝐹𝑣) → ((𝐹𝑢)𝑀𝑦) = ((𝐹𝑢)𝑀(𝐹𝑣)))
15 fveq2 6858 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑣) → (𝐹𝑦) = (𝐹‘(𝐹𝑣)))
1615oveq2d 7403 . . . . . . . . . . 11 (𝑦 = (𝐹𝑣) → ((𝐹‘(𝐹𝑢))𝑁(𝐹𝑦)) = ((𝐹‘(𝐹𝑢))𝑁(𝐹‘(𝐹𝑣))))
1714, 16eqeq12d 2745 . . . . . . . . . 10 (𝑦 = (𝐹𝑣) → (((𝐹𝑢)𝑀𝑦) = ((𝐹‘(𝐹𝑢))𝑁(𝐹𝑦)) ↔ ((𝐹𝑢)𝑀(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝑁(𝐹‘(𝐹𝑣)))))
1813, 17rspc2v 3599 . . . . . . . . 9 (((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) → ((𝐹𝑢)𝑀(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝑁(𝐹‘(𝐹𝑣)))))
1918impcom 407 . . . . . . . 8 ((∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) ∧ ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)) → ((𝐹𝑢)𝑀(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝑁(𝐹‘(𝐹𝑣))))
2019adantll 714 . . . . . . 7 (((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) ∧ ((𝐹𝑢) ∈ 𝑋 ∧ (𝐹𝑣) ∈ 𝑋)) → ((𝐹𝑢)𝑀(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝑁(𝐹‘(𝐹𝑣))))
219, 20syl 17 . . . . . 6 (((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹𝑢)𝑀(𝐹𝑣)) = ((𝐹‘(𝐹𝑢))𝑁(𝐹‘(𝐹𝑣))))
22 f1ocnvfv2 7252 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑢𝑌) → (𝐹‘(𝐹𝑢)) = 𝑢)
2322adantrr 717 . . . . . . . 8 ((𝐹:𝑋1-1-onto𝑌 ∧ (𝑢𝑌𝑣𝑌)) → (𝐹‘(𝐹𝑢)) = 𝑢)
24 f1ocnvfv2 7252 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑣𝑌) → (𝐹‘(𝐹𝑣)) = 𝑣)
2524adantrl 716 . . . . . . . 8 ((𝐹:𝑋1-1-onto𝑌 ∧ (𝑢𝑌𝑣𝑌)) → (𝐹‘(𝐹𝑣)) = 𝑣)
2623, 25oveq12d 7405 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌 ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹‘(𝐹𝑢))𝑁(𝐹‘(𝐹𝑣))) = (𝑢𝑁𝑣))
2726adantlr 715 . . . . . 6 (((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) ∧ (𝑢𝑌𝑣𝑌)) → ((𝐹‘(𝐹𝑢))𝑁(𝐹‘(𝐹𝑣))) = (𝑢𝑁𝑣))
2821, 27eqtr2d 2765 . . . . 5 (((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) ∧ (𝑢𝑌𝑣𝑌)) → (𝑢𝑁𝑣) = ((𝐹𝑢)𝑀(𝐹𝑣)))
2928ralrimivva 3180 . . . 4 ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → ∀𝑢𝑌𝑣𝑌 (𝑢𝑁𝑣) = ((𝐹𝑢)𝑀(𝐹𝑣)))
302, 29jca 511 . . 3 ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → (𝐹:𝑌1-1-onto𝑋 ∧ ∀𝑢𝑌𝑣𝑌 (𝑢𝑁𝑣) = ((𝐹𝑢)𝑀(𝐹𝑣))))
3130a1i 11 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → (𝐹:𝑌1-1-onto𝑋 ∧ ∀𝑢𝑌𝑣𝑌 (𝑢𝑁𝑣) = ((𝐹𝑢)𝑀(𝐹𝑣)))))
32 isismty 37795 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
33 isismty 37795 . . 3 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑀 ∈ (∞Met‘𝑋)) → (𝐹 ∈ (𝑁 Ismty 𝑀) ↔ (𝐹:𝑌1-1-onto𝑋 ∧ ∀𝑢𝑌𝑣𝑌 (𝑢𝑁𝑣) = ((𝐹𝑢)𝑀(𝐹𝑣)))))
3433ancoms 458 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑁 Ismty 𝑀) ↔ (𝐹:𝑌1-1-onto𝑋 ∧ ∀𝑢𝑌𝑣𝑌 (𝑢𝑁𝑣) = ((𝐹𝑢)𝑀(𝐹𝑣)))))
3531, 32, 343imtr4d 294 1 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ccnv 5637  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  ∞Metcxmet 21249   Ismty cismty 37792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-xr 11212  df-xmet 21257  df-ismty 37793
This theorem is referenced by:  ismtyhmeolem  37798  ismtyhmeo  37799  ismtybnd  37801
  Copyright terms: Public domain W3C validator