Step | Hyp | Ref
| Expression |
1 | | f1ocnv 6712 |
. . . . 5
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → ◡𝐹:𝑌–1-1-onto→𝑋) |
3 | | f1ocnvdm 7137 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑢 ∈ 𝑌) → (◡𝐹‘𝑢) ∈ 𝑋) |
4 | 3 | ex 412 |
. . . . . . . . . 10
⊢ (𝐹:𝑋–1-1-onto→𝑌 → (𝑢 ∈ 𝑌 → (◡𝐹‘𝑢) ∈ 𝑋)) |
5 | | f1ocnvdm 7137 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑣 ∈ 𝑌) → (◡𝐹‘𝑣) ∈ 𝑋) |
6 | 5 | ex 412 |
. . . . . . . . . 10
⊢ (𝐹:𝑋–1-1-onto→𝑌 → (𝑣 ∈ 𝑌 → (◡𝐹‘𝑣) ∈ 𝑋)) |
7 | 4, 6 | anim12d 608 |
. . . . . . . . 9
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → ((◡𝐹‘𝑢) ∈ 𝑋 ∧ (◡𝐹‘𝑣) ∈ 𝑋))) |
8 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → ((𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → ((◡𝐹‘𝑢) ∈ 𝑋 ∧ (◡𝐹‘𝑣) ∈ 𝑋))) |
9 | 8 | imdistani 568 |
. . . . . . 7
⊢ (((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) ∧ ((◡𝐹‘𝑢) ∈ 𝑋 ∧ (◡𝐹‘𝑣) ∈ 𝑋))) |
10 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑥 = (◡𝐹‘𝑢) → (𝑥𝑀𝑦) = ((◡𝐹‘𝑢)𝑀𝑦)) |
11 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹‘𝑢) → (𝐹‘𝑥) = (𝐹‘(◡𝐹‘𝑢))) |
12 | 11 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑥 = (◡𝐹‘𝑢) → ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) = ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘𝑦))) |
13 | 10, 12 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = (◡𝐹‘𝑢) → ((𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) ↔ ((◡𝐹‘𝑢)𝑀𝑦) = ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘𝑦)))) |
14 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑦 = (◡𝐹‘𝑣) → ((◡𝐹‘𝑢)𝑀𝑦) = ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣))) |
15 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = (◡𝐹‘𝑣) → (𝐹‘𝑦) = (𝐹‘(◡𝐹‘𝑣))) |
16 | 15 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑦 = (◡𝐹‘𝑣) → ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘𝑦)) = ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘(◡𝐹‘𝑣)))) |
17 | 14, 16 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑦 = (◡𝐹‘𝑣) → (((◡𝐹‘𝑢)𝑀𝑦) = ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘𝑦)) ↔ ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣)) = ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘(◡𝐹‘𝑣))))) |
18 | 13, 17 | rspc2v 3562 |
. . . . . . . . 9
⊢ (((◡𝐹‘𝑢) ∈ 𝑋 ∧ (◡𝐹‘𝑣) ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) → ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣)) = ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘(◡𝐹‘𝑣))))) |
19 | 18 | impcom 407 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) ∧ ((◡𝐹‘𝑢) ∈ 𝑋 ∧ (◡𝐹‘𝑣) ∈ 𝑋)) → ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣)) = ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘(◡𝐹‘𝑣)))) |
20 | 19 | adantll 710 |
. . . . . . 7
⊢ (((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) ∧ ((◡𝐹‘𝑢) ∈ 𝑋 ∧ (◡𝐹‘𝑣) ∈ 𝑋)) → ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣)) = ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘(◡𝐹‘𝑣)))) |
21 | 9, 20 | syl 17 |
. . . . . 6
⊢ (((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣)) = ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘(◡𝐹‘𝑣)))) |
22 | | f1ocnvfv2 7130 |
. . . . . . . . 9
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑢 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑢)) = 𝑢) |
23 | 22 | adantrr 713 |
. . . . . . . 8
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → (𝐹‘(◡𝐹‘𝑢)) = 𝑢) |
24 | | f1ocnvfv2 7130 |
. . . . . . . . 9
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑣 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑣)) = 𝑣) |
25 | 24 | adantrl 712 |
. . . . . . . 8
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → (𝐹‘(◡𝐹‘𝑣)) = 𝑣) |
26 | 23, 25 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘(◡𝐹‘𝑣))) = (𝑢𝑁𝑣)) |
27 | 26 | adantlr 711 |
. . . . . 6
⊢ (((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → ((𝐹‘(◡𝐹‘𝑢))𝑁(𝐹‘(◡𝐹‘𝑣))) = (𝑢𝑁𝑣)) |
28 | 21, 27 | eqtr2d 2779 |
. . . . 5
⊢ (((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) ∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → (𝑢𝑁𝑣) = ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣))) |
29 | 28 | ralrimivva 3114 |
. . . 4
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → ∀𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 (𝑢𝑁𝑣) = ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣))) |
30 | 2, 29 | jca 511 |
. . 3
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → (◡𝐹:𝑌–1-1-onto→𝑋 ∧ ∀𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 (𝑢𝑁𝑣) = ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣)))) |
31 | 30 | a1i 11 |
. 2
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → ((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → (◡𝐹:𝑌–1-1-onto→𝑋 ∧ ∀𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 (𝑢𝑁𝑣) = ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣))))) |
32 | | isismty 35886 |
. 2
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))))) |
33 | | isismty 35886 |
. . 3
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑀 ∈ (∞Met‘𝑋)) → (◡𝐹 ∈ (𝑁 Ismty 𝑀) ↔ (◡𝐹:𝑌–1-1-onto→𝑋 ∧ ∀𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 (𝑢𝑁𝑣) = ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣))))) |
34 | 33 | ancoms 458 |
. 2
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (◡𝐹 ∈ (𝑁 Ismty 𝑀) ↔ (◡𝐹:𝑌–1-1-onto→𝑋 ∧ ∀𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 (𝑢𝑁𝑣) = ((◡𝐹‘𝑢)𝑀(◡𝐹‘𝑣))))) |
35 | 31, 32, 34 | 3imtr4d 293 |
1
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) → ◡𝐹 ∈ (𝑁 Ismty 𝑀))) |