Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtybndlem Structured version   Visualization version   GIF version

Theorem ismtybndlem 33937
Description: Lemma for ismtybnd 33938. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 19-Jan-2014.)
Assertion
Ref Expression
ismtybndlem ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌)))

Proof of Theorem ismtybndlem
Dummy variables 𝑤 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isismty 33932 . . . . . . . . . . . . 13 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑧𝑋𝑤𝑋 (𝑧𝑀𝑤) = ((𝐹𝑧)𝑁(𝐹𝑤)))))
21biimp3a 1580 . . . . . . . . . . . 12 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑧𝑋𝑤𝑋 (𝑧𝑀𝑤) = ((𝐹𝑧)𝑁(𝐹𝑤))))
32simpld 476 . . . . . . . . . . 11 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑋1-1-onto𝑌)
4 f1ocnv 6290 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
5 f1of 6278 . . . . . . . . . . 11 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
63, 4, 53syl 18 . . . . . . . . . 10 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑌𝑋)
76ffvelrnda 6502 . . . . . . . . 9 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (𝐹𝑦) ∈ 𝑋)
8 oveq1 6800 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (𝑥(ball‘𝑀)𝑟) = ((𝐹𝑦)(ball‘𝑀)𝑟))
98eqeq2d 2781 . . . . . . . . . . 11 (𝑥 = (𝐹𝑦) → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
109rexbidv 3200 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
1110rspcv 3456 . . . . . . . . 9 ((𝐹𝑦) ∈ 𝑋 → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
127, 11syl 17 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
13 imaeq2 5603 . . . . . . . . . . 11 (𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → (𝐹𝑋) = (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)))
14 f1ofo 6285 . . . . . . . . . . . . . 14 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
15 foima 6261 . . . . . . . . . . . . . 14 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
163, 14, 153syl 18 . . . . . . . . . . . . 13 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹𝑋) = 𝑌)
1716adantr 466 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹𝑋) = 𝑌)
18 rpxr 12043 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
1918adantl 467 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
207, 19anim12dan 597 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝐹𝑦) ∈ 𝑋𝑟 ∈ ℝ*))
21 ismtyima 33934 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ ((𝐹𝑦) ∈ 𝑋𝑟 ∈ ℝ*)) → (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) = ((𝐹‘(𝐹𝑦))(ball‘𝑁)𝑟))
2220, 21syldan 571 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) = ((𝐹‘(𝐹𝑦))(ball‘𝑁)𝑟))
23 simpl 468 . . . . . . . . . . . . . . 15 ((𝑦𝑌𝑟 ∈ ℝ+) → 𝑦𝑌)
24 f1ocnvfv2 6676 . . . . . . . . . . . . . . 15 ((𝐹:𝑋1-1-onto𝑌𝑦𝑌) → (𝐹‘(𝐹𝑦)) = 𝑦)
253, 23, 24syl2an 575 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2625oveq1d 6808 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝐹‘(𝐹𝑦))(ball‘𝑁)𝑟) = (𝑦(ball‘𝑁)𝑟))
2722, 26eqtrd 2805 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) = (𝑦(ball‘𝑁)𝑟))
2817, 27eqeq12d 2786 . . . . . . . . . . 11 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝐹𝑋) = (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) ↔ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
2913, 28syl5ib 234 . . . . . . . . . 10 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3029anassrs 458 . . . . . . . . 9 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) ∧ 𝑟 ∈ ℝ+) → (𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3130reximdva 3165 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3212, 31syld 47 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3332ralrimdva 3118 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
34 simp2 1131 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝑁 ∈ (∞Met‘𝑌))
3533, 34jctild 509 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))))
36353expib 1116 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))))
3736com12 32 . . 3 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (∞Met‘𝑋) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))))
3837impd 396 . 2 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → ((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))))
39 isbndx 33913 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
40 isbndx 33913 . 2 (𝑁 ∈ (Bnd‘𝑌) ↔ (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
4138, 39, 403imtr4g 285 1 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wrex 3062  ccnv 5248  cima 5252  wf 6027  ontowfo 6029  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  *cxr 10275  +crp 12035  ∞Metcxmt 19946  ballcbl 19948  Bndcbnd 33898   Ismty cismty 33929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-er 7896  df-ec 7898  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-2 11281  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-bnd 33910  df-ismty 33930
This theorem is referenced by:  ismtybnd  33938
  Copyright terms: Public domain W3C validator