| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isismty 37808 | . . . . . . . . . . . . 13
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑧𝑀𝑤) = ((𝐹‘𝑧)𝑁(𝐹‘𝑤))))) | 
| 2 | 1 | biimp3a 1471 | . . . . . . . . . . . 12
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑧𝑀𝑤) = ((𝐹‘𝑧)𝑁(𝐹‘𝑤)))) | 
| 3 | 2 | simpld 494 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑋–1-1-onto→𝑌) | 
| 4 |  | f1ocnv 6860 | . . . . . . . . . . 11
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) | 
| 5 |  | f1of 6848 | . . . . . . . . . . 11
⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) | 
| 6 | 3, 4, 5 | 3syl 18 | . . . . . . . . . 10
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → ◡𝐹:𝑌⟶𝑋) | 
| 7 | 6 | ffvelcdmda 7104 | . . . . . . . . 9
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦 ∈ 𝑌) → (◡𝐹‘𝑦) ∈ 𝑋) | 
| 8 |  | oveq1 7438 | . . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹‘𝑦) → (𝑥(ball‘𝑀)𝑟) = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟)) | 
| 9 | 8 | eqeq2d 2748 | . . . . . . . . . . 11
⊢ (𝑥 = (◡𝐹‘𝑦) → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟))) | 
| 10 | 9 | rexbidv 3179 | . . . . . . . . . 10
⊢ (𝑥 = (◡𝐹‘𝑦) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟))) | 
| 11 | 10 | rspcv 3618 | . . . . . . . . 9
⊢ ((◡𝐹‘𝑦) ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟))) | 
| 12 | 7, 11 | syl 17 | . . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦 ∈ 𝑌) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟))) | 
| 13 |  | imaeq2 6074 | . . . . . . . . . . 11
⊢ (𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟) → (𝐹 “ 𝑋) = (𝐹 “ ((◡𝐹‘𝑦)(ball‘𝑀)𝑟))) | 
| 14 |  | f1ofo 6855 | . . . . . . . . . . . . . 14
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–onto→𝑌) | 
| 15 |  | foima 6825 | . . . . . . . . . . . . . 14
⊢ (𝐹:𝑋–onto→𝑌 → (𝐹 “ 𝑋) = 𝑌) | 
| 16 | 3, 14, 15 | 3syl 18 | . . . . . . . . . . . . 13
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹 “ 𝑋) = 𝑌) | 
| 17 | 16 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → (𝐹 “ 𝑋) = 𝑌) | 
| 18 |  | rpxr 13044 | . . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) | 
| 19 | 18 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ*) | 
| 20 | 7, 19 | anim12dan 619 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → ((◡𝐹‘𝑦) ∈ 𝑋 ∧ 𝑟 ∈
ℝ*)) | 
| 21 |  | ismtyima 37810 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ ((◡𝐹‘𝑦) ∈ 𝑋 ∧ 𝑟 ∈ ℝ*)) → (𝐹 “ ((◡𝐹‘𝑦)(ball‘𝑀)𝑟)) = ((𝐹‘(◡𝐹‘𝑦))(ball‘𝑁)𝑟)) | 
| 22 | 20, 21 | syldan 591 | . . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → (𝐹 “ ((◡𝐹‘𝑦)(ball‘𝑀)𝑟)) = ((𝐹‘(◡𝐹‘𝑦))(ball‘𝑁)𝑟)) | 
| 23 |  | simpl 482 | . . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ 𝑌) | 
| 24 |  | f1ocnvfv2 7297 | . . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑦 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑦)) = 𝑦) | 
| 25 | 3, 23, 24 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → (𝐹‘(◡𝐹‘𝑦)) = 𝑦) | 
| 26 | 25 | oveq1d 7446 | . . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → ((𝐹‘(◡𝐹‘𝑦))(ball‘𝑁)𝑟) = (𝑦(ball‘𝑁)𝑟)) | 
| 27 | 22, 26 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → (𝐹 “ ((◡𝐹‘𝑦)(ball‘𝑀)𝑟)) = (𝑦(ball‘𝑁)𝑟)) | 
| 28 | 17, 27 | eqeq12d 2753 | . . . . . . . . . . 11
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → ((𝐹 “ 𝑋) = (𝐹 “ ((◡𝐹‘𝑦)(ball‘𝑀)𝑟)) ↔ 𝑌 = (𝑦(ball‘𝑁)𝑟))) | 
| 29 | 13, 28 | imbitrid 244 | . . . . . . . . . 10
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → (𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟) → 𝑌 = (𝑦(ball‘𝑁)𝑟))) | 
| 30 | 29 | anassrs 467 | . . . . . . . . 9
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦 ∈ 𝑌) ∧ 𝑟 ∈ ℝ+) → (𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟) → 𝑌 = (𝑦(ball‘𝑁)𝑟))) | 
| 31 | 30 | reximdva 3168 | . . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦 ∈ 𝑌) → (∃𝑟 ∈ ℝ+ 𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))) | 
| 32 | 12, 31 | syld 47 | . . . . . . 7
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦 ∈ 𝑌) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))) | 
| 33 | 32 | ralrimdva 3154 | . . . . . 6
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))) | 
| 34 |  | simp2 1138 | . . . . . 6
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝑁 ∈ (∞Met‘𝑌)) | 
| 35 | 33, 34 | jctild 525 | . . . . 5
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))) | 
| 36 | 35 | 3expib 1123 | . . . 4
⊢ (𝑀 ∈ (∞Met‘𝑋) → ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))))) | 
| 37 | 36 | com12 32 | . . 3
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))))) | 
| 38 | 37 | impd 410 | . 2
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → ((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))) | 
| 39 |  | isbndx 37789 | . 2
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) | 
| 40 |  | isbndx 37789 | . 2
⊢ (𝑁 ∈ (Bnd‘𝑌) ↔ (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))) | 
| 41 | 38, 39, 40 | 3imtr4g 296 | 1
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌))) |