Step | Hyp | Ref
| Expression |
1 | | isismty 35886 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑧𝑀𝑤) = ((𝐹‘𝑧)𝑁(𝐹‘𝑤))))) |
2 | 1 | biimp3a 1467 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝑧𝑀𝑤) = ((𝐹‘𝑧)𝑁(𝐹‘𝑤)))) |
3 | 2 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑋–1-1-onto→𝑌) |
4 | | f1ocnv 6712 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
5 | | f1of 6700 |
. . . . . . . . . . 11
⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) |
6 | 3, 4, 5 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → ◡𝐹:𝑌⟶𝑋) |
7 | 6 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦 ∈ 𝑌) → (◡𝐹‘𝑦) ∈ 𝑋) |
8 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹‘𝑦) → (𝑥(ball‘𝑀)𝑟) = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟)) |
9 | 8 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑥 = (◡𝐹‘𝑦) → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟))) |
10 | 9 | rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑥 = (◡𝐹‘𝑦) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟))) |
11 | 10 | rspcv 3547 |
. . . . . . . . 9
⊢ ((◡𝐹‘𝑦) ∈ 𝑋 → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟))) |
12 | 7, 11 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦 ∈ 𝑌) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟))) |
13 | | imaeq2 5954 |
. . . . . . . . . . 11
⊢ (𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟) → (𝐹 “ 𝑋) = (𝐹 “ ((◡𝐹‘𝑦)(ball‘𝑀)𝑟))) |
14 | | f1ofo 6707 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–onto→𝑌) |
15 | | foima 6677 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋–onto→𝑌 → (𝐹 “ 𝑋) = 𝑌) |
16 | 3, 14, 15 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹 “ 𝑋) = 𝑌) |
17 | 16 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → (𝐹 “ 𝑋) = 𝑌) |
18 | | rpxr 12668 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
19 | 18 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ*) |
20 | 7, 19 | anim12dan 618 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → ((◡𝐹‘𝑦) ∈ 𝑋 ∧ 𝑟 ∈
ℝ*)) |
21 | | ismtyima 35888 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ ((◡𝐹‘𝑦) ∈ 𝑋 ∧ 𝑟 ∈ ℝ*)) → (𝐹 “ ((◡𝐹‘𝑦)(ball‘𝑀)𝑟)) = ((𝐹‘(◡𝐹‘𝑦))(ball‘𝑁)𝑟)) |
22 | 20, 21 | syldan 590 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → (𝐹 “ ((◡𝐹‘𝑦)(ball‘𝑀)𝑟)) = ((𝐹‘(◡𝐹‘𝑦))(ball‘𝑁)𝑟)) |
23 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ 𝑌) |
24 | | f1ocnvfv2 7130 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑦 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑦)) = 𝑦) |
25 | 3, 23, 24 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → (𝐹‘(◡𝐹‘𝑦)) = 𝑦) |
26 | 25 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → ((𝐹‘(◡𝐹‘𝑦))(ball‘𝑁)𝑟) = (𝑦(ball‘𝑁)𝑟)) |
27 | 22, 26 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → (𝐹 “ ((◡𝐹‘𝑦)(ball‘𝑀)𝑟)) = (𝑦(ball‘𝑁)𝑟)) |
28 | 17, 27 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → ((𝐹 “ 𝑋) = (𝐹 “ ((◡𝐹‘𝑦)(ball‘𝑀)𝑟)) ↔ 𝑌 = (𝑦(ball‘𝑁)𝑟))) |
29 | 13, 28 | syl5ib 243 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦 ∈ 𝑌 ∧ 𝑟 ∈ ℝ+)) → (𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟) → 𝑌 = (𝑦(ball‘𝑁)𝑟))) |
30 | 29 | anassrs 467 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦 ∈ 𝑌) ∧ 𝑟 ∈ ℝ+) → (𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟) → 𝑌 = (𝑦(ball‘𝑁)𝑟))) |
31 | 30 | reximdva 3202 |
. . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦 ∈ 𝑌) → (∃𝑟 ∈ ℝ+ 𝑋 = ((◡𝐹‘𝑦)(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))) |
32 | 12, 31 | syld 47 |
. . . . . . 7
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦 ∈ 𝑌) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))) |
33 | 32 | ralrimdva 3112 |
. . . . . 6
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))) |
34 | | simp2 1135 |
. . . . . 6
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝑁 ∈ (∞Met‘𝑌)) |
35 | 33, 34 | jctild 525 |
. . . . 5
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))) |
36 | 35 | 3expib 1120 |
. . . 4
⊢ (𝑀 ∈ (∞Met‘𝑋) → ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))))) |
37 | 36 | com12 32 |
. . 3
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (∞Met‘𝑋) → (∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))))) |
38 | 37 | impd 410 |
. 2
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → ((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))) |
39 | | isbndx 35867 |
. 2
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) |
40 | | isbndx 35867 |
. 2
⊢ (𝑁 ∈ (Bnd‘𝑌) ↔ (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦 ∈ 𝑌 ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))) |
41 | 38, 39, 40 | 3imtr4g 295 |
1
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌))) |