Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtybndlem Structured version   Visualization version   GIF version

Theorem ismtybndlem 37813
Description: Lemma for ismtybnd 37814. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 19-Jan-2014.)
Assertion
Ref Expression
ismtybndlem ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌)))

Proof of Theorem ismtybndlem
Dummy variables 𝑤 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isismty 37808 . . . . . . . . . . . . 13 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑧𝑋𝑤𝑋 (𝑧𝑀𝑤) = ((𝐹𝑧)𝑁(𝐹𝑤)))))
21biimp3a 1471 . . . . . . . . . . . 12 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑧𝑋𝑤𝑋 (𝑧𝑀𝑤) = ((𝐹𝑧)𝑁(𝐹𝑤))))
32simpld 494 . . . . . . . . . . 11 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑋1-1-onto𝑌)
4 f1ocnv 6860 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
5 f1of 6848 . . . . . . . . . . 11 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
63, 4, 53syl 18 . . . . . . . . . 10 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑌𝑋)
76ffvelcdmda 7104 . . . . . . . . 9 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (𝐹𝑦) ∈ 𝑋)
8 oveq1 7438 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (𝑥(ball‘𝑀)𝑟) = ((𝐹𝑦)(ball‘𝑀)𝑟))
98eqeq2d 2748 . . . . . . . . . . 11 (𝑥 = (𝐹𝑦) → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
109rexbidv 3179 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
1110rspcv 3618 . . . . . . . . 9 ((𝐹𝑦) ∈ 𝑋 → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
127, 11syl 17 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟)))
13 imaeq2 6074 . . . . . . . . . . 11 (𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → (𝐹𝑋) = (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)))
14 f1ofo 6855 . . . . . . . . . . . . . 14 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
15 foima 6825 . . . . . . . . . . . . . 14 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
163, 14, 153syl 18 . . . . . . . . . . . . 13 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹𝑋) = 𝑌)
1716adantr 480 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹𝑋) = 𝑌)
18 rpxr 13044 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
1918adantl 481 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
207, 19anim12dan 619 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝐹𝑦) ∈ 𝑋𝑟 ∈ ℝ*))
21 ismtyima 37810 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ ((𝐹𝑦) ∈ 𝑋𝑟 ∈ ℝ*)) → (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) = ((𝐹‘(𝐹𝑦))(ball‘𝑁)𝑟))
2220, 21syldan 591 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) = ((𝐹‘(𝐹𝑦))(ball‘𝑁)𝑟))
23 simpl 482 . . . . . . . . . . . . . . 15 ((𝑦𝑌𝑟 ∈ ℝ+) → 𝑦𝑌)
24 f1ocnvfv2 7297 . . . . . . . . . . . . . . 15 ((𝐹:𝑋1-1-onto𝑌𝑦𝑌) → (𝐹‘(𝐹𝑦)) = 𝑦)
253, 23, 24syl2an 596 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2625oveq1d 7446 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝐹‘(𝐹𝑦))(ball‘𝑁)𝑟) = (𝑦(ball‘𝑁)𝑟))
2722, 26eqtrd 2777 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) = (𝑦(ball‘𝑁)𝑟))
2817, 27eqeq12d 2753 . . . . . . . . . . 11 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝐹𝑋) = (𝐹 “ ((𝐹𝑦)(ball‘𝑀)𝑟)) ↔ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
2913, 28imbitrid 244 . . . . . . . . . 10 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3029anassrs 467 . . . . . . . . 9 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) ∧ 𝑟 ∈ ℝ+) → (𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3130reximdva 3168 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (∃𝑟 ∈ ℝ+ 𝑋 = ((𝐹𝑦)(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3212, 31syld 47 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ 𝑦𝑌) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
3332ralrimdva 3154 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
34 simp2 1138 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝑁 ∈ (∞Met‘𝑌))
3533, 34jctild 525 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))))
36353expib 1123 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))))
3736com12 32 . . 3 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (∞Met‘𝑋) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))))
3837impd 410 . 2 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → ((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟))))
39 isbndx 37789 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
40 isbndx 37789 . 2 (𝑁 ∈ (Bnd‘𝑌) ↔ (𝑁 ∈ (∞Met‘𝑌) ∧ ∀𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
4138, 39, 403imtr4g 296 1 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  ccnv 5684  cima 5688  wf 6557  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  *cxr 11294  +crp 13034  ∞Metcxmet 21349  ballcbl 21351  Bndcbnd 37774   Ismty cismty 37805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-ec 8747  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-bnd 37786  df-ismty 37806
This theorem is referenced by:  ismtybnd  37814
  Copyright terms: Public domain W3C validator