Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyhmeo Structured version   Visualization version   GIF version

Theorem ismtyhmeo 37129
Description: An isometry is a homeomorphism on the induced topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyhmeo.1 𝐽 = (MetOpenβ€˜π‘€)
ismtyhmeo.2 𝐾 = (MetOpenβ€˜π‘)
Assertion
Ref Expression
ismtyhmeo ((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑁 ∈ (∞Metβ€˜π‘Œ)) β†’ (𝑀 Ismty 𝑁) βŠ† (𝐽Homeo𝐾))

Proof of Theorem ismtyhmeo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ismtyhmeo.1 . . . . 5 𝐽 = (MetOpenβ€˜π‘€)
2 ismtyhmeo.2 . . . . 5 𝐾 = (MetOpenβ€˜π‘)
3 simpll 764 . . . . 5 (((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑁 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) β†’ 𝑀 ∈ (∞Metβ€˜π‘‹))
4 simplr 766 . . . . 5 (((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑁 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) β†’ 𝑁 ∈ (∞Metβ€˜π‘Œ))
5 simpr 484 . . . . 5 (((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑁 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) β†’ 𝑓 ∈ (𝑀 Ismty 𝑁))
61, 2, 3, 4, 5ismtyhmeolem 37128 . . . 4 (((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑁 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) β†’ 𝑓 ∈ (𝐽 Cn 𝐾))
7 ismtycnv 37126 . . . . . 6 ((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑁 ∈ (∞Metβ€˜π‘Œ)) β†’ (𝑓 ∈ (𝑀 Ismty 𝑁) β†’ ◑𝑓 ∈ (𝑁 Ismty 𝑀)))
87imp 406 . . . . 5 (((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑁 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) β†’ ◑𝑓 ∈ (𝑁 Ismty 𝑀))
92, 1, 4, 3, 8ismtyhmeolem 37128 . . . 4 (((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑁 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) β†’ ◑𝑓 ∈ (𝐾 Cn 𝐽))
10 ishmeo 23584 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) ↔ (𝑓 ∈ (𝐽 Cn 𝐾) ∧ ◑𝑓 ∈ (𝐾 Cn 𝐽)))
116, 9, 10sylanbrc 582 . . 3 (((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑁 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) β†’ 𝑓 ∈ (𝐽Homeo𝐾))
1211ex 412 . 2 ((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑁 ∈ (∞Metβ€˜π‘Œ)) β†’ (𝑓 ∈ (𝑀 Ismty 𝑁) β†’ 𝑓 ∈ (𝐽Homeo𝐾)))
1312ssrdv 3980 1 ((𝑀 ∈ (∞Metβ€˜π‘‹) ∧ 𝑁 ∈ (∞Metβ€˜π‘Œ)) β†’ (𝑀 Ismty 𝑁) βŠ† (𝐽Homeo𝐾))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   βŠ† wss 3940  β—‘ccnv 5665  β€˜cfv 6533  (class class class)co 7401  βˆžMetcxmet 21212  MetOpencmopn 21217   Cn ccn 23049  Homeochmeo 23578   Ismty cismty 37122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-topgen 17387  df-psmet 21219  df-xmet 21220  df-bl 21222  df-mopn 21223  df-top 22717  df-topon 22734  df-bases 22770  df-cn 23052  df-hmeo 23580  df-ismty 37123
This theorem is referenced by:  reheibor  37163
  Copyright terms: Public domain W3C validator