![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismtyhmeo | Structured version Visualization version GIF version |
Description: An isometry is a homeomorphism on the induced topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
ismtyhmeo.1 | β’ π½ = (MetOpenβπ) |
ismtyhmeo.2 | β’ πΎ = (MetOpenβπ) |
Ref | Expression |
---|---|
ismtyhmeo | β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β (π Ismty π) β (π½HomeoπΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismtyhmeo.1 | . . . . 5 β’ π½ = (MetOpenβπ) | |
2 | ismtyhmeo.2 | . . . . 5 β’ πΎ = (MetOpenβπ) | |
3 | simpll 764 | . . . . 5 β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ π β (π Ismty π)) β π β (βMetβπ)) | |
4 | simplr 766 | . . . . 5 β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ π β (π Ismty π)) β π β (βMetβπ)) | |
5 | simpr 484 | . . . . 5 β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ π β (π Ismty π)) β π β (π Ismty π)) | |
6 | 1, 2, 3, 4, 5 | ismtyhmeolem 37128 | . . . 4 β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ π β (π Ismty π)) β π β (π½ Cn πΎ)) |
7 | ismtycnv 37126 | . . . . . 6 β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β (π β (π Ismty π) β β‘π β (π Ismty π))) | |
8 | 7 | imp 406 | . . . . 5 β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ π β (π Ismty π)) β β‘π β (π Ismty π)) |
9 | 2, 1, 4, 3, 8 | ismtyhmeolem 37128 | . . . 4 β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ π β (π Ismty π)) β β‘π β (πΎ Cn π½)) |
10 | ishmeo 23584 | . . . 4 β’ (π β (π½HomeoπΎ) β (π β (π½ Cn πΎ) β§ β‘π β (πΎ Cn π½))) | |
11 | 6, 9, 10 | sylanbrc 582 | . . 3 β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ π β (π Ismty π)) β π β (π½HomeoπΎ)) |
12 | 11 | ex 412 | . 2 β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β (π β (π Ismty π) β π β (π½HomeoπΎ))) |
13 | 12 | ssrdv 3980 | 1 β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β (π Ismty π) β (π½HomeoπΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wss 3940 β‘ccnv 5665 βcfv 6533 (class class class)co 7401 βMetcxmet 21212 MetOpencmopn 21217 Cn ccn 23049 Homeochmeo 23578 Ismty cismty 37122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-sup 9432 df-inf 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-topgen 17387 df-psmet 21219 df-xmet 21220 df-bl 21222 df-mopn 21223 df-top 22717 df-topon 22734 df-bases 22770 df-cn 23052 df-hmeo 23580 df-ismty 37123 |
This theorem is referenced by: reheibor 37163 |
Copyright terms: Public domain | W3C validator |