Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismtyhmeo | Structured version Visualization version GIF version |
Description: An isometry is a homeomorphism on the induced topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
ismtyhmeo.1 | ⊢ 𝐽 = (MetOpen‘𝑀) |
ismtyhmeo.2 | ⊢ 𝐾 = (MetOpen‘𝑁) |
Ref | Expression |
---|---|
ismtyhmeo | ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) ⊆ (𝐽Homeo𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismtyhmeo.1 | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝑀) | |
2 | ismtyhmeo.2 | . . . . 5 ⊢ 𝐾 = (MetOpen‘𝑁) | |
3 | simpll 767 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑀 ∈ (∞Met‘𝑋)) | |
4 | simplr 769 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑁 ∈ (∞Met‘𝑌)) | |
5 | simpr 488 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝑀 Ismty 𝑁)) | |
6 | 1, 2, 3, 4, 5 | ismtyhmeolem 35699 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
7 | ismtycnv 35697 | . . . . . 6 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑓 ∈ (𝑀 Ismty 𝑁) → ◡𝑓 ∈ (𝑁 Ismty 𝑀))) | |
8 | 7 | imp 410 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → ◡𝑓 ∈ (𝑁 Ismty 𝑀)) |
9 | 2, 1, 4, 3, 8 | ismtyhmeolem 35699 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → ◡𝑓 ∈ (𝐾 Cn 𝐽)) |
10 | ishmeo 22656 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) ↔ (𝑓 ∈ (𝐽 Cn 𝐾) ∧ ◡𝑓 ∈ (𝐾 Cn 𝐽))) | |
11 | 6, 9, 10 | sylanbrc 586 | . . 3 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝐽Homeo𝐾)) |
12 | 11 | ex 416 | . 2 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑓 ∈ (𝑀 Ismty 𝑁) → 𝑓 ∈ (𝐽Homeo𝐾))) |
13 | 12 | ssrdv 3907 | 1 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) ⊆ (𝐽Homeo𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 ◡ccnv 5550 ‘cfv 6380 (class class class)co 7213 ∞Metcxmet 20348 MetOpencmopn 20353 Cn ccn 22121 Homeochmeo 22650 Ismty cismty 35693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-topgen 16948 df-psmet 20355 df-xmet 20356 df-bl 20358 df-mopn 20359 df-top 21791 df-topon 21808 df-bases 21843 df-cn 22124 df-hmeo 22652 df-ismty 35694 |
This theorem is referenced by: reheibor 35734 |
Copyright terms: Public domain | W3C validator |