Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyhmeo Structured version   Visualization version   GIF version

Theorem ismtyhmeo 35085
Description: An isometry is a homeomorphism on the induced topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyhmeo.1 𝐽 = (MetOpen‘𝑀)
ismtyhmeo.2 𝐾 = (MetOpen‘𝑁)
Assertion
Ref Expression
ismtyhmeo ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) ⊆ (𝐽Homeo𝐾))

Proof of Theorem ismtyhmeo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ismtyhmeo.1 . . . . 5 𝐽 = (MetOpen‘𝑀)
2 ismtyhmeo.2 . . . . 5 𝐾 = (MetOpen‘𝑁)
3 simpll 765 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑀 ∈ (∞Met‘𝑋))
4 simplr 767 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑁 ∈ (∞Met‘𝑌))
5 simpr 487 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝑀 Ismty 𝑁))
61, 2, 3, 4, 5ismtyhmeolem 35084 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝐽 Cn 𝐾))
7 ismtycnv 35082 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑓 ∈ (𝑀 Ismty 𝑁) → 𝑓 ∈ (𝑁 Ismty 𝑀)))
87imp 409 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝑁 Ismty 𝑀))
92, 1, 4, 3, 8ismtyhmeolem 35084 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝐾 Cn 𝐽))
10 ishmeo 22369 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) ↔ (𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑓 ∈ (𝐾 Cn 𝐽)))
116, 9, 10sylanbrc 585 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝐽Homeo𝐾))
1211ex 415 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑓 ∈ (𝑀 Ismty 𝑁) → 𝑓 ∈ (𝐽Homeo𝐾)))
1312ssrdv 3975 1 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) ⊆ (𝐽Homeo𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3938  ccnv 5556  cfv 6357  (class class class)co 7158  ∞Metcxmet 20532  MetOpencmopn 20537   Cn ccn 21834  Homeochmeo 22363   Ismty cismty 35078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cn 21837  df-hmeo 22365  df-ismty 35079
This theorem is referenced by:  reheibor  35119
  Copyright terms: Public domain W3C validator