Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismtyhmeo | Structured version Visualization version GIF version |
Description: An isometry is a homeomorphism on the induced topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
ismtyhmeo.1 | ⊢ 𝐽 = (MetOpen‘𝑀) |
ismtyhmeo.2 | ⊢ 𝐾 = (MetOpen‘𝑁) |
Ref | Expression |
---|---|
ismtyhmeo | ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) ⊆ (𝐽Homeo𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismtyhmeo.1 | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝑀) | |
2 | ismtyhmeo.2 | . . . . 5 ⊢ 𝐾 = (MetOpen‘𝑁) | |
3 | simpll 764 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑀 ∈ (∞Met‘𝑋)) | |
4 | simplr 766 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑁 ∈ (∞Met‘𝑌)) | |
5 | simpr 485 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝑀 Ismty 𝑁)) | |
6 | 1, 2, 3, 4, 5 | ismtyhmeolem 36018 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝐽 Cn 𝐾)) |
7 | ismtycnv 36016 | . . . . . 6 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑓 ∈ (𝑀 Ismty 𝑁) → ◡𝑓 ∈ (𝑁 Ismty 𝑀))) | |
8 | 7 | imp 407 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → ◡𝑓 ∈ (𝑁 Ismty 𝑀)) |
9 | 2, 1, 4, 3, 8 | ismtyhmeolem 36018 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → ◡𝑓 ∈ (𝐾 Cn 𝐽)) |
10 | ishmeo 22982 | . . . 4 ⊢ (𝑓 ∈ (𝐽Homeo𝐾) ↔ (𝑓 ∈ (𝐽 Cn 𝐾) ∧ ◡𝑓 ∈ (𝐾 Cn 𝐽))) | |
11 | 6, 9, 10 | sylanbrc 583 | . . 3 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝐽Homeo𝐾)) |
12 | 11 | ex 413 | . 2 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑓 ∈ (𝑀 Ismty 𝑁) → 𝑓 ∈ (𝐽Homeo𝐾))) |
13 | 12 | ssrdv 3937 | 1 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) ⊆ (𝐽Homeo𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 ◡ccnv 5606 ‘cfv 6465 (class class class)co 7315 ∞Metcxmet 20654 MetOpencmopn 20659 Cn ccn 22447 Homeochmeo 22976 Ismty cismty 36012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-map 8665 df-en 8782 df-dom 8783 df-sdom 8784 df-sup 9271 df-inf 9272 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-n0 12307 df-z 12393 df-uz 12656 df-q 12762 df-rp 12804 df-xneg 12921 df-xadd 12922 df-xmul 12923 df-topgen 17224 df-psmet 20661 df-xmet 20662 df-bl 20664 df-mopn 20665 df-top 22115 df-topon 22132 df-bases 22168 df-cn 22450 df-hmeo 22978 df-ismty 36013 |
This theorem is referenced by: reheibor 36053 |
Copyright terms: Public domain | W3C validator |