![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismtybnd | Structured version Visualization version GIF version |
Description: Isometries preserve boundedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 19-Jan-2014.) |
Ref | Expression |
---|---|
ismtybnd | ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) ↔ 𝑁 ∈ (Bnd‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismtybndlem 37792 | . . 3 ⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌))) | |
2 | 1 | 3adant1 1129 | . 2 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌))) |
3 | ismtycnv 37788 | . . . 4 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) → ◡𝐹 ∈ (𝑁 Ismty 𝑀))) | |
4 | 3 | 3impia 1116 | . . 3 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → ◡𝐹 ∈ (𝑁 Ismty 𝑀)) |
5 | ismtybndlem 37792 | . . . 4 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ ◡𝐹 ∈ (𝑁 Ismty 𝑀)) → (𝑁 ∈ (Bnd‘𝑌) → 𝑀 ∈ (Bnd‘𝑋))) | |
6 | 5 | 3adant2 1130 | . . 3 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ ◡𝐹 ∈ (𝑁 Ismty 𝑀)) → (𝑁 ∈ (Bnd‘𝑌) → 𝑀 ∈ (Bnd‘𝑋))) |
7 | 4, 6 | syld3an3 1408 | . 2 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑁 ∈ (Bnd‘𝑌) → 𝑀 ∈ (Bnd‘𝑋))) |
8 | 2, 7 | impbid 212 | 1 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) ↔ 𝑁 ∈ (Bnd‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2105 ◡ccnv 5687 ‘cfv 6562 (class class class)co 7430 ∞Metcxmet 21366 Bndcbnd 37753 Ismty cismty 37784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-er 8743 df-ec 8745 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-2 12326 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-bnd 37765 df-ismty 37785 |
This theorem is referenced by: reheibor 37825 |
Copyright terms: Public domain | W3C validator |