Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isopropd Structured version   Visualization version   GIF version

Theorem isopropd 48915
Description: Two structures with the same base, hom-sets and composition operation have the same isomorphisms. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
sectpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
sectpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
isopropd (𝜑 → (Iso‘𝐶) = (Iso‘𝐷))

Proof of Theorem isopropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 sectpropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
2 sectpropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
31, 2isopropdlem 48914 . . 3 ((𝜑𝑓 ∈ (Iso‘𝐶)) → 𝑓 ∈ (Iso‘𝐷))
41eqcomd 2740 . . . 4 (𝜑 → (Homf𝐷) = (Homf𝐶))
52eqcomd 2740 . . . 4 (𝜑 → (compf𝐷) = (compf𝐶))
64, 5isopropdlem 48914 . . 3 ((𝜑𝑓 ∈ (Iso‘𝐷)) → 𝑓 ∈ (Iso‘𝐶))
73, 6impbida 800 . 2 (𝜑 → (𝑓 ∈ (Iso‘𝐶) ↔ 𝑓 ∈ (Iso‘𝐷)))
87eqrdv 2732 1 (𝜑 → (Iso‘𝐶) = (Iso‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6541  Homf chomf 17681  compfccomf 17682  Isociso 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-cat 17683  df-cid 17684  df-homf 17685  df-comf 17686  df-sect 17763  df-inv 17764  df-iso 17765
This theorem is referenced by:  cicpropdlem  48923
  Copyright terms: Public domain W3C validator