Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrlem3 Structured version   Visualization version   GIF version

Theorem uptrlem3 49201
Description: Lemma for uptr 49202. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptr.y (𝜑 → (𝑅𝑋) = 𝑌)
uptr.r (𝜑𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
uptr.k (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
uptr.b 𝐵 = (Base‘𝐷)
uptr.x (𝜑𝑋𝐵)
uptr.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
uptr.n (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
uptr.j 𝐽 = (Hom ‘𝐷)
uptr.m (𝜑𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
uptrlem3.a 𝐴 = (Base‘𝐶)
uptrlem3.z (𝜑𝑍𝐴)
Assertion
Ref Expression
uptrlem3 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁))

Proof of Theorem uptrlem3
Dummy variables 𝑔 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
2 uptr.j . . . 4 𝐽 = (Hom ‘𝐷)
3 eqid 2729 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
4 eqid 2729 . . . 4 (comp‘𝐷) = (comp‘𝐷)
5 eqid 2729 . . . 4 (comp‘𝐸) = (comp‘𝐸)
6 uptr.x . . . . . 6 (𝜑𝑋𝐵)
7 uptr.b . . . . . 6 𝐵 = (Base‘𝐷)
86, 7eleqtrdi 2838 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐷))
98adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑋 ∈ (Base‘𝐷))
10 uptr.y . . . . 5 (𝜑 → (𝑅𝑋) = 𝑌)
1110adantr 480 . . . 4 ((𝜑𝑦𝐴) → (𝑅𝑋) = 𝑌)
12 uptrlem3.z . . . . . 6 (𝜑𝑍𝐴)
13 uptrlem3.a . . . . . 6 𝐴 = (Base‘𝐶)
1412, 13eleqtrdi 2838 . . . . 5 (𝜑𝑍 ∈ (Base‘𝐶))
1514adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑍 ∈ (Base‘𝐶))
16 simpr 484 . . . . 5 ((𝜑𝑦𝐴) → 𝑦𝐴)
1716, 13eleqtrdi 2838 . . . 4 ((𝜑𝑦𝐴) → 𝑦 ∈ (Base‘𝐶))
18 uptr.m . . . . 5 (𝜑𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
1918adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
20 uptr.n . . . . 5 (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
2120adantr 480 . . . 4 ((𝜑𝑦𝐴) → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
22 uptr.f . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
2322adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝐹(𝐶 Func 𝐷)𝐺)
24 uptr.r . . . . 5 (𝜑𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
2524adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
26 uptr.k . . . . 5 (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
2726adantr 480 . . . 4 ((𝜑𝑦𝐴) → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
281, 2, 3, 4, 5, 9, 11, 15, 17, 19, 21, 23, 25, 27uptrlem1 49199 . . 3 ((𝜑𝑦𝐴) → (∀ ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁) ↔ ∀𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
2928ralbidva 3154 . 2 (𝜑 → (∀𝑦𝐴 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁) ↔ ∀𝑦𝐴𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
30 eqid 2729 . . 3 (Base‘𝐸) = (Base‘𝐸)
31 inss1 4200 . . . . . . . . 9 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
32 fullfunc 17870 . . . . . . . . 9 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
3331, 32sstri 3956 . . . . . . . 8 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
3433ssbri 5152 . . . . . . 7 (𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆𝑅(𝐷 Func 𝐸)𝑆)
3524, 34syl 17 . . . . . 6 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
367, 30, 35funcf1 17828 . . . . 5 (𝜑𝑅:𝐵⟶(Base‘𝐸))
3736, 6ffvelcdmd 7057 . . . 4 (𝜑 → (𝑅𝑋) ∈ (Base‘𝐸))
3810, 37eqeltrrd 2829 . . 3 (𝜑𝑌 ∈ (Base‘𝐸))
3922, 35cofucla 49085 . . . . 5 (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) ∈ (𝐶 Func 𝐸))
4026, 39eqeltrrd 2829 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐸))
41 df-br 5108 . . . 4 (𝐾(𝐶 Func 𝐸)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐸))
4240, 41sylibr 234 . . 3 (𝜑𝐾(𝐶 Func 𝐸)𝐿)
4313, 7, 22funcf1 17828 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
4443, 12ffvelcdmd 7057 . . . . . 6 (𝜑 → (𝐹𝑍) ∈ 𝐵)
457, 2, 3, 35, 6, 44funcf2 17830 . . . . 5 (𝜑 → (𝑋𝑆(𝐹𝑍)):(𝑋𝐽(𝐹𝑍))⟶((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))))
4645, 18ffvelcdmd 7057 . . . 4 (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) ∈ ((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))))
4713, 22, 35, 26, 12cofu1a 49083 . . . . 5 (𝜑 → (𝑅‘(𝐹𝑍)) = (𝐾𝑍))
4810, 47oveq12d 7405 . . . 4 (𝜑 → ((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))) = (𝑌(Hom ‘𝐸)(𝐾𝑍)))
4946, 20, 483eltr3d 2842 . . 3 (𝜑𝑁 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑍)))
5013, 30, 1, 3, 5, 38, 42, 12, 49isup 49169 . 2 (𝜑 → (𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁 ↔ ∀𝑦𝐴 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁)))
5113, 7, 1, 2, 4, 6, 22, 12, 18isup 49169 . 2 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀 ↔ ∀𝑦𝐴𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
5229, 50, 513bitr4rd 312 1 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3352  cin 3913  cop 4595   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232   Func cfunc 17816  func ccofu 17818   Full cful 17866   Faith cfth 17867   UP cup 49162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822  df-full 17868  df-fth 17869  df-up 49163
This theorem is referenced by:  uptr  49202
  Copyright terms: Public domain W3C validator