| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2730 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 2 | | uptr.j |
. . . 4
⊢ 𝐽 = (Hom ‘𝐷) |
| 3 | | eqid 2730 |
. . . 4
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 4 | | eqid 2730 |
. . . 4
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 5 | | eqid 2730 |
. . . 4
⊢
(comp‘𝐸) =
(comp‘𝐸) |
| 6 | | uptr.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 7 | | uptr.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐷) |
| 8 | 6, 7 | eleqtrdi 2839 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑋 ∈ (Base‘𝐷)) |
| 10 | | uptr.y |
. . . . 5
⊢ (𝜑 → (𝑅‘𝑋) = 𝑌) |
| 11 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑅‘𝑋) = 𝑌) |
| 12 | | uptrlem3.z |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝐴) |
| 13 | | uptrlem3.a |
. . . . . 6
⊢ 𝐴 = (Base‘𝐶) |
| 14 | 12, 13 | eleqtrdi 2839 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| 15 | 14 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑍 ∈ (Base‘𝐶)) |
| 16 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 17 | 16, 13 | eleqtrdi 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ (Base‘𝐶)) |
| 18 | | uptr.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) |
| 19 | 18 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑀 ∈ (𝑋𝐽(𝐹‘𝑍))) |
| 20 | | uptr.n |
. . . . 5
⊢ (𝜑 → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) |
| 21 | 20 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) |
| 22 | | uptr.f |
. . . . 5
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 23 | 22 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐹(𝐶 Func 𝐷)𝐺) |
| 24 | | uptr.r |
. . . . 5
⊢ (𝜑 → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) |
| 25 | 24 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) |
| 26 | | uptr.k |
. . . . 5
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∘func
〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| 27 | 26 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (〈𝑅, 𝑆〉 ∘func
〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| 28 | 1, 2, 3, 4, 5, 9, 11, 15, 17, 19, 21, 23, 25, 27 | uptrlem1 49117 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (∀ℎ ∈ (𝑌(Hom ‘𝐸)(𝐾‘𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)ℎ = (((𝑍𝐿𝑦)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉(comp‘𝐸)(𝐾‘𝑦))𝑁) ↔ ∀𝑔 ∈ (𝑋𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉(comp‘𝐷)(𝐹‘𝑦))𝑀))) |
| 29 | 28 | ralbidva 3156 |
. 2
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ∀ℎ ∈ (𝑌(Hom ‘𝐸)(𝐾‘𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)ℎ = (((𝑍𝐿𝑦)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉(comp‘𝐸)(𝐾‘𝑦))𝑁) ↔ ∀𝑦 ∈ 𝐴 ∀𝑔 ∈ (𝑋𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉(comp‘𝐷)(𝐹‘𝑦))𝑀))) |
| 30 | | eqid 2730 |
. . 3
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 31 | | inss1 4208 |
. . . . . . . . 9
⊢ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸) |
| 32 | | fullfunc 17876 |
. . . . . . . . 9
⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) |
| 33 | 31, 32 | sstri 3964 |
. . . . . . . 8
⊢ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸) |
| 34 | 33 | ssbri 5160 |
. . . . . . 7
⊢ (𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆 → 𝑅(𝐷 Func 𝐸)𝑆) |
| 35 | 24, 34 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅(𝐷 Func 𝐸)𝑆) |
| 36 | 7, 30, 35 | funcf1 17834 |
. . . . 5
⊢ (𝜑 → 𝑅:𝐵⟶(Base‘𝐸)) |
| 37 | 36, 6 | ffvelcdmd 7064 |
. . . 4
⊢ (𝜑 → (𝑅‘𝑋) ∈ (Base‘𝐸)) |
| 38 | 10, 37 | eqeltrrd 2830 |
. . 3
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐸)) |
| 39 | 22, 35 | cofucla 49013 |
. . . . 5
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∘func
〈𝐹, 𝐺〉) ∈ (𝐶 Func 𝐸)) |
| 40 | 26, 39 | eqeltrrd 2830 |
. . . 4
⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐸)) |
| 41 | | df-br 5116 |
. . . 4
⊢ (𝐾(𝐶 Func 𝐸)𝐿 ↔ 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐸)) |
| 42 | 40, 41 | sylibr 234 |
. . 3
⊢ (𝜑 → 𝐾(𝐶 Func 𝐸)𝐿) |
| 43 | 13, 7, 22 | funcf1 17834 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 44 | 43, 12 | ffvelcdmd 7064 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑍) ∈ 𝐵) |
| 45 | 7, 2, 3, 35, 6, 44 | funcf2 17836 |
. . . . 5
⊢ (𝜑 → (𝑋𝑆(𝐹‘𝑍)):(𝑋𝐽(𝐹‘𝑍))⟶((𝑅‘𝑋)(Hom ‘𝐸)(𝑅‘(𝐹‘𝑍)))) |
| 46 | 45, 18 | ffvelcdmd 7064 |
. . . 4
⊢ (𝜑 → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) ∈ ((𝑅‘𝑋)(Hom ‘𝐸)(𝑅‘(𝐹‘𝑍)))) |
| 47 | 13, 22, 35, 26, 12 | cofu1a 49011 |
. . . . 5
⊢ (𝜑 → (𝑅‘(𝐹‘𝑍)) = (𝐾‘𝑍)) |
| 48 | 10, 47 | oveq12d 7412 |
. . . 4
⊢ (𝜑 → ((𝑅‘𝑋)(Hom ‘𝐸)(𝑅‘(𝐹‘𝑍))) = (𝑌(Hom ‘𝐸)(𝐾‘𝑍))) |
| 49 | 46, 20, 48 | 3eltr3d 2843 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (𝑌(Hom ‘𝐸)(𝐾‘𝑍))) |
| 50 | 13, 30, 1, 3, 5, 38,
42, 12, 49 | isup 49088 |
. 2
⊢ (𝜑 → (𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁 ↔ ∀𝑦 ∈ 𝐴 ∀ℎ ∈ (𝑌(Hom ‘𝐸)(𝐾‘𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)ℎ = (((𝑍𝐿𝑦)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉(comp‘𝐸)(𝐾‘𝑦))𝑁))) |
| 51 | 13, 7, 1, 2, 4, 6, 22, 12, 18 | isup 49088 |
. 2
⊢ (𝜑 → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ ∀𝑦 ∈ 𝐴 ∀𝑔 ∈ (𝑋𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉(comp‘𝐷)(𝐹‘𝑦))𝑀))) |
| 52 | 29, 50, 51 | 3bitr4rd 312 |
1
⊢ (𝜑 → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) |