Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrlem3 Structured version   Visualization version   GIF version

Theorem uptrlem3 49243
Description: Lemma for uptr 49244. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptr.y (𝜑 → (𝑅𝑋) = 𝑌)
uptr.r (𝜑𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
uptr.k (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
uptr.b 𝐵 = (Base‘𝐷)
uptr.x (𝜑𝑋𝐵)
uptr.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
uptr.n (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
uptr.j 𝐽 = (Hom ‘𝐷)
uptr.m (𝜑𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
uptrlem3.a 𝐴 = (Base‘𝐶)
uptrlem3.z (𝜑𝑍𝐴)
Assertion
Ref Expression
uptrlem3 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁))

Proof of Theorem uptrlem3
Dummy variables 𝑔 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
2 uptr.j . . . 4 𝐽 = (Hom ‘𝐷)
3 eqid 2731 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
4 eqid 2731 . . . 4 (comp‘𝐷) = (comp‘𝐷)
5 eqid 2731 . . . 4 (comp‘𝐸) = (comp‘𝐸)
6 uptr.x . . . . . 6 (𝜑𝑋𝐵)
7 uptr.b . . . . . 6 𝐵 = (Base‘𝐷)
86, 7eleqtrdi 2841 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐷))
98adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑋 ∈ (Base‘𝐷))
10 uptr.y . . . . 5 (𝜑 → (𝑅𝑋) = 𝑌)
1110adantr 480 . . . 4 ((𝜑𝑦𝐴) → (𝑅𝑋) = 𝑌)
12 uptrlem3.z . . . . . 6 (𝜑𝑍𝐴)
13 uptrlem3.a . . . . . 6 𝐴 = (Base‘𝐶)
1412, 13eleqtrdi 2841 . . . . 5 (𝜑𝑍 ∈ (Base‘𝐶))
1514adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑍 ∈ (Base‘𝐶))
16 simpr 484 . . . . 5 ((𝜑𝑦𝐴) → 𝑦𝐴)
1716, 13eleqtrdi 2841 . . . 4 ((𝜑𝑦𝐴) → 𝑦 ∈ (Base‘𝐶))
18 uptr.m . . . . 5 (𝜑𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
1918adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
20 uptr.n . . . . 5 (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
2120adantr 480 . . . 4 ((𝜑𝑦𝐴) → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
22 uptr.f . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
2322adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝐹(𝐶 Func 𝐷)𝐺)
24 uptr.r . . . . 5 (𝜑𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
2524adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
26 uptr.k . . . . 5 (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
2726adantr 480 . . . 4 ((𝜑𝑦𝐴) → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
281, 2, 3, 4, 5, 9, 11, 15, 17, 19, 21, 23, 25, 27uptrlem1 49241 . . 3 ((𝜑𝑦𝐴) → (∀ ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁) ↔ ∀𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
2928ralbidva 3153 . 2 (𝜑 → (∀𝑦𝐴 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁) ↔ ∀𝑦𝐴𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
30 eqid 2731 . . 3 (Base‘𝐸) = (Base‘𝐸)
31 inss1 4187 . . . . . . . . 9 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
32 fullfunc 17812 . . . . . . . . 9 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
3331, 32sstri 3944 . . . . . . . 8 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
3433ssbri 5136 . . . . . . 7 (𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆𝑅(𝐷 Func 𝐸)𝑆)
3524, 34syl 17 . . . . . 6 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
367, 30, 35funcf1 17770 . . . . 5 (𝜑𝑅:𝐵⟶(Base‘𝐸))
3736, 6ffvelcdmd 7018 . . . 4 (𝜑 → (𝑅𝑋) ∈ (Base‘𝐸))
3810, 37eqeltrrd 2832 . . 3 (𝜑𝑌 ∈ (Base‘𝐸))
3922, 35cofucla 49127 . . . . 5 (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) ∈ (𝐶 Func 𝐸))
4026, 39eqeltrrd 2832 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐸))
41 df-br 5092 . . . 4 (𝐾(𝐶 Func 𝐸)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐸))
4240, 41sylibr 234 . . 3 (𝜑𝐾(𝐶 Func 𝐸)𝐿)
4313, 7, 22funcf1 17770 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
4443, 12ffvelcdmd 7018 . . . . . 6 (𝜑 → (𝐹𝑍) ∈ 𝐵)
457, 2, 3, 35, 6, 44funcf2 17772 . . . . 5 (𝜑 → (𝑋𝑆(𝐹𝑍)):(𝑋𝐽(𝐹𝑍))⟶((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))))
4645, 18ffvelcdmd 7018 . . . 4 (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) ∈ ((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))))
4713, 22, 35, 26, 12cofu1a 49125 . . . . 5 (𝜑 → (𝑅‘(𝐹𝑍)) = (𝐾𝑍))
4810, 47oveq12d 7364 . . . 4 (𝜑 → ((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))) = (𝑌(Hom ‘𝐸)(𝐾𝑍)))
4946, 20, 483eltr3d 2845 . . 3 (𝜑𝑁 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑍)))
5013, 30, 1, 3, 5, 38, 42, 12, 49isup 49211 . 2 (𝜑 → (𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁 ↔ ∀𝑦𝐴 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁)))
5113, 7, 1, 2, 4, 6, 22, 12, 18isup 49211 . 2 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀 ↔ ∀𝑦𝐴𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
5229, 50, 513bitr4rd 312 1 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  cin 3901  cop 4582   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  Hom chom 17169  compcco 17170   Func cfunc 17758  func ccofu 17760   Full cful 17808   Faith cfth 17809   UP cup 49204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17571  df-cid 17572  df-func 17762  df-cofu 17764  df-full 17810  df-fth 17811  df-up 49205
This theorem is referenced by:  uptr  49244
  Copyright terms: Public domain W3C validator