Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrlem3 Structured version   Visualization version   GIF version

Theorem uptrlem3 49337
Description: Lemma for uptr 49338. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptr.y (𝜑 → (𝑅𝑋) = 𝑌)
uptr.r (𝜑𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
uptr.k (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
uptr.b 𝐵 = (Base‘𝐷)
uptr.x (𝜑𝑋𝐵)
uptr.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
uptr.n (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
uptr.j 𝐽 = (Hom ‘𝐷)
uptr.m (𝜑𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
uptrlem3.a 𝐴 = (Base‘𝐶)
uptrlem3.z (𝜑𝑍𝐴)
Assertion
Ref Expression
uptrlem3 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁))

Proof of Theorem uptrlem3
Dummy variables 𝑔 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
2 uptr.j . . . 4 𝐽 = (Hom ‘𝐷)
3 eqid 2733 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
4 eqid 2733 . . . 4 (comp‘𝐷) = (comp‘𝐷)
5 eqid 2733 . . . 4 (comp‘𝐸) = (comp‘𝐸)
6 uptr.x . . . . . 6 (𝜑𝑋𝐵)
7 uptr.b . . . . . 6 𝐵 = (Base‘𝐷)
86, 7eleqtrdi 2843 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐷))
98adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑋 ∈ (Base‘𝐷))
10 uptr.y . . . . 5 (𝜑 → (𝑅𝑋) = 𝑌)
1110adantr 480 . . . 4 ((𝜑𝑦𝐴) → (𝑅𝑋) = 𝑌)
12 uptrlem3.z . . . . . 6 (𝜑𝑍𝐴)
13 uptrlem3.a . . . . . 6 𝐴 = (Base‘𝐶)
1412, 13eleqtrdi 2843 . . . . 5 (𝜑𝑍 ∈ (Base‘𝐶))
1514adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑍 ∈ (Base‘𝐶))
16 simpr 484 . . . . 5 ((𝜑𝑦𝐴) → 𝑦𝐴)
1716, 13eleqtrdi 2843 . . . 4 ((𝜑𝑦𝐴) → 𝑦 ∈ (Base‘𝐶))
18 uptr.m . . . . 5 (𝜑𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
1918adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
20 uptr.n . . . . 5 (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
2120adantr 480 . . . 4 ((𝜑𝑦𝐴) → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
22 uptr.f . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
2322adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝐹(𝐶 Func 𝐷)𝐺)
24 uptr.r . . . . 5 (𝜑𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
2524adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
26 uptr.k . . . . 5 (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
2726adantr 480 . . . 4 ((𝜑𝑦𝐴) → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
281, 2, 3, 4, 5, 9, 11, 15, 17, 19, 21, 23, 25, 27uptrlem1 49335 . . 3 ((𝜑𝑦𝐴) → (∀ ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁) ↔ ∀𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
2928ralbidva 3154 . 2 (𝜑 → (∀𝑦𝐴 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁) ↔ ∀𝑦𝐴𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
30 eqid 2733 . . 3 (Base‘𝐸) = (Base‘𝐸)
31 inss1 4186 . . . . . . . . 9 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
32 fullfunc 17817 . . . . . . . . 9 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
3331, 32sstri 3940 . . . . . . . 8 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
3433ssbri 5138 . . . . . . 7 (𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆𝑅(𝐷 Func 𝐸)𝑆)
3524, 34syl 17 . . . . . 6 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
367, 30, 35funcf1 17775 . . . . 5 (𝜑𝑅:𝐵⟶(Base‘𝐸))
3736, 6ffvelcdmd 7024 . . . 4 (𝜑 → (𝑅𝑋) ∈ (Base‘𝐸))
3810, 37eqeltrrd 2834 . . 3 (𝜑𝑌 ∈ (Base‘𝐸))
3922, 35cofucla 49221 . . . . 5 (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) ∈ (𝐶 Func 𝐸))
4026, 39eqeltrrd 2834 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐸))
41 df-br 5094 . . . 4 (𝐾(𝐶 Func 𝐸)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐸))
4240, 41sylibr 234 . . 3 (𝜑𝐾(𝐶 Func 𝐸)𝐿)
4313, 7, 22funcf1 17775 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
4443, 12ffvelcdmd 7024 . . . . . 6 (𝜑 → (𝐹𝑍) ∈ 𝐵)
457, 2, 3, 35, 6, 44funcf2 17777 . . . . 5 (𝜑 → (𝑋𝑆(𝐹𝑍)):(𝑋𝐽(𝐹𝑍))⟶((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))))
4645, 18ffvelcdmd 7024 . . . 4 (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) ∈ ((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))))
4713, 22, 35, 26, 12cofu1a 49219 . . . . 5 (𝜑 → (𝑅‘(𝐹𝑍)) = (𝐾𝑍))
4810, 47oveq12d 7370 . . . 4 (𝜑 → ((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))) = (𝑌(Hom ‘𝐸)(𝐾𝑍)))
4946, 20, 483eltr3d 2847 . . 3 (𝜑𝑁 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑍)))
5013, 30, 1, 3, 5, 38, 42, 12, 49isup 49305 . 2 (𝜑 → (𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁 ↔ ∀𝑦𝐴 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁)))
5113, 7, 1, 2, 4, 6, 22, 12, 18isup 49305 . 2 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀 ↔ ∀𝑦𝐴𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
5229, 50, 513bitr4rd 312 1 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  ∃!wreu 3345  cin 3897  cop 4581   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174  compcco 17175   Func cfunc 17763  func ccofu 17765   Full cful 17813   Faith cfth 17814   UP cup 49298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-cat 17576  df-cid 17577  df-func 17767  df-cofu 17769  df-full 17815  df-fth 17816  df-up 49299
This theorem is referenced by:  uptr  49338
  Copyright terms: Public domain W3C validator