Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrlem3 Structured version   Visualization version   GIF version

Theorem uptrlem3 49198
Description: Lemma for uptr 49199. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptr.y (𝜑 → (𝑅𝑋) = 𝑌)
uptr.r (𝜑𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
uptr.k (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
uptr.b 𝐵 = (Base‘𝐷)
uptr.x (𝜑𝑋𝐵)
uptr.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
uptr.n (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
uptr.j 𝐽 = (Hom ‘𝐷)
uptr.m (𝜑𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
uptrlem3.a 𝐴 = (Base‘𝐶)
uptrlem3.z (𝜑𝑍𝐴)
Assertion
Ref Expression
uptrlem3 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁))

Proof of Theorem uptrlem3
Dummy variables 𝑔 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
2 uptr.j . . . 4 𝐽 = (Hom ‘𝐷)
3 eqid 2729 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
4 eqid 2729 . . . 4 (comp‘𝐷) = (comp‘𝐷)
5 eqid 2729 . . . 4 (comp‘𝐸) = (comp‘𝐸)
6 uptr.x . . . . . 6 (𝜑𝑋𝐵)
7 uptr.b . . . . . 6 𝐵 = (Base‘𝐷)
86, 7eleqtrdi 2838 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐷))
98adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑋 ∈ (Base‘𝐷))
10 uptr.y . . . . 5 (𝜑 → (𝑅𝑋) = 𝑌)
1110adantr 480 . . . 4 ((𝜑𝑦𝐴) → (𝑅𝑋) = 𝑌)
12 uptrlem3.z . . . . . 6 (𝜑𝑍𝐴)
13 uptrlem3.a . . . . . 6 𝐴 = (Base‘𝐶)
1412, 13eleqtrdi 2838 . . . . 5 (𝜑𝑍 ∈ (Base‘𝐶))
1514adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑍 ∈ (Base‘𝐶))
16 simpr 484 . . . . 5 ((𝜑𝑦𝐴) → 𝑦𝐴)
1716, 13eleqtrdi 2838 . . . 4 ((𝜑𝑦𝐴) → 𝑦 ∈ (Base‘𝐶))
18 uptr.m . . . . 5 (𝜑𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
1918adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑀 ∈ (𝑋𝐽(𝐹𝑍)))
20 uptr.n . . . . 5 (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
2120adantr 480 . . . 4 ((𝜑𝑦𝐴) → ((𝑋𝑆(𝐹𝑍))‘𝑀) = 𝑁)
22 uptr.f . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
2322adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝐹(𝐶 Func 𝐷)𝐺)
24 uptr.r . . . . 5 (𝜑𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
2524adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆)
26 uptr.k . . . . 5 (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
2726adantr 480 . . . 4 ((𝜑𝑦𝐴) → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
281, 2, 3, 4, 5, 9, 11, 15, 17, 19, 21, 23, 25, 27uptrlem1 49196 . . 3 ((𝜑𝑦𝐴) → (∀ ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁) ↔ ∀𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
2928ralbidva 3150 . 2 (𝜑 → (∀𝑦𝐴 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁) ↔ ∀𝑦𝐴𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
30 eqid 2729 . . 3 (Base‘𝐸) = (Base‘𝐸)
31 inss1 4190 . . . . . . . . 9 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
32 fullfunc 17833 . . . . . . . . 9 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
3331, 32sstri 3947 . . . . . . . 8 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
3433ssbri 5140 . . . . . . 7 (𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆𝑅(𝐷 Func 𝐸)𝑆)
3524, 34syl 17 . . . . . 6 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
367, 30, 35funcf1 17791 . . . . 5 (𝜑𝑅:𝐵⟶(Base‘𝐸))
3736, 6ffvelcdmd 7023 . . . 4 (𝜑 → (𝑅𝑋) ∈ (Base‘𝐸))
3810, 37eqeltrrd 2829 . . 3 (𝜑𝑌 ∈ (Base‘𝐸))
3922, 35cofucla 49082 . . . . 5 (𝜑 → (⟨𝑅, 𝑆⟩ ∘func𝐹, 𝐺⟩) ∈ (𝐶 Func 𝐸))
4026, 39eqeltrrd 2829 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐸))
41 df-br 5096 . . . 4 (𝐾(𝐶 Func 𝐸)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐸))
4240, 41sylibr 234 . . 3 (𝜑𝐾(𝐶 Func 𝐸)𝐿)
4313, 7, 22funcf1 17791 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
4443, 12ffvelcdmd 7023 . . . . . 6 (𝜑 → (𝐹𝑍) ∈ 𝐵)
457, 2, 3, 35, 6, 44funcf2 17793 . . . . 5 (𝜑 → (𝑋𝑆(𝐹𝑍)):(𝑋𝐽(𝐹𝑍))⟶((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))))
4645, 18ffvelcdmd 7023 . . . 4 (𝜑 → ((𝑋𝑆(𝐹𝑍))‘𝑀) ∈ ((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))))
4713, 22, 35, 26, 12cofu1a 49080 . . . . 5 (𝜑 → (𝑅‘(𝐹𝑍)) = (𝐾𝑍))
4810, 47oveq12d 7371 . . . 4 (𝜑 → ((𝑅𝑋)(Hom ‘𝐸)(𝑅‘(𝐹𝑍))) = (𝑌(Hom ‘𝐸)(𝐾𝑍)))
4946, 20, 483eltr3d 2842 . . 3 (𝜑𝑁 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑍)))
5013, 30, 1, 3, 5, 38, 42, 12, 49isup 49166 . 2 (𝜑 → (𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁 ↔ ∀𝑦𝐴 ∈ (𝑌(Hom ‘𝐸)(𝐾𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦) = (((𝑍𝐿𝑦)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩(comp‘𝐸)(𝐾𝑦))𝑁)))
5113, 7, 1, 2, 4, 6, 22, 12, 18isup 49166 . 2 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀 ↔ ∀𝑦𝐴𝑔 ∈ (𝑋𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑍(Hom ‘𝐶)𝑦)𝑔 = (((𝑍𝐺𝑦)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩(comp‘𝐷)(𝐹𝑦))𝑀)))
5229, 50, 513bitr4rd 312 1 (𝜑 → (𝑍(⟨𝐹, 𝐺⟩(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨𝐾, 𝐿⟩(𝐶 UP 𝐸)𝑌)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3343  cin 3904  cop 4585   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  compcco 17191   Func cfunc 17779  func ccofu 17781   Full cful 17829   Faith cfth 17830   UP cup 49159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-cat 17592  df-cid 17593  df-func 17783  df-cofu 17785  df-full 17831  df-fth 17832  df-up 49160
This theorem is referenced by:  uptr  49199
  Copyright terms: Public domain W3C validator