Proof of Theorem lanup
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. . . 4
⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) |
| 2 | 1 | fucbas 17963 |
. . 3
⊢ (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸)) |
| 3 | | lanup.s |
. . . 4
⊢ 𝑆 = (𝐶 FuncCat 𝐸) |
| 4 | 3 | fucbas 17963 |
. . 3
⊢ (𝐶 Func 𝐸) = (Base‘𝑆) |
| 5 | | lanup.m |
. . . 4
⊢ 𝑀 = (𝐷 Nat 𝐸) |
| 6 | 1, 5 | fuchom 17964 |
. . 3
⊢ 𝑀 = (Hom ‘(𝐷 FuncCat 𝐸)) |
| 7 | | lanup.n |
. . . 4
⊢ 𝑁 = (𝐶 Nat 𝐸) |
| 8 | 3, 7 | fuchom 17964 |
. . 3
⊢ 𝑁 = (Hom ‘𝑆) |
| 9 | | lanup.x |
. . 3
⊢ ∙ =
(comp‘𝑆) |
| 10 | | lanup.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝑋𝑁(𝐿 ∘func 𝐹))) |
| 11 | 7 | natrcl 17953 |
. . . . 5
⊢ (𝐴 ∈ (𝑋𝑁(𝐿 ∘func 𝐹)) → (𝑋 ∈ (𝐶 Func 𝐸) ∧ (𝐿 ∘func 𝐹) ∈ (𝐶 Func 𝐸))) |
| 12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ (𝐶 Func 𝐸) ∧ (𝐿 ∘func 𝐹) ∈ (𝐶 Func 𝐸))) |
| 13 | 12 | simpld 494 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) |
| 14 | 13 | func1st2nd 48936 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝑋)(𝐶 Func 𝐸)(2nd ‘𝑋)) |
| 15 | 14 | funcrcl3 48938 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ Cat) |
| 16 | | lanup.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 17 | 1, 15, 3, 16 | prcoffunca 49159 |
. . . 4
⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F
𝐹) ∈ ((𝐷 FuncCat 𝐸) Func 𝑆)) |
| 18 | 17 | func1st2nd 48936 |
. . 3
⊢ (𝜑 → (1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))((𝐷 FuncCat 𝐸) Func 𝑆)(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))) |
| 19 | | lanup.l |
. . 3
⊢ (𝜑 → 𝐿 ∈ (𝐷 Func 𝐸)) |
| 20 | | eqidd 2735 |
. . . . . 6
⊢ (𝜑 → (1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹)) = (1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))) |
| 21 | 19, 20 | prcof1 49161 |
. . . . 5
⊢ (𝜑 → ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿) = (𝐿 ∘func 𝐹)) |
| 22 | 21 | oveq2d 7416 |
. . . 4
⊢ (𝜑 → (𝑋𝑁((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)) = (𝑋𝑁(𝐿 ∘func 𝐹))) |
| 23 | 10, 22 | eleqtrrd 2836 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (𝑋𝑁((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿))) |
| 24 | 2, 4, 6, 8, 9, 13,
18, 19, 23 | isup 48981 |
. 2
⊢ (𝜑 → (𝐿(〈(1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹)), (2nd
‘(〈𝐷, 𝐸〉
−∘F 𝐹))〉((𝐷 FuncCat 𝐸)UP𝑆)𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (𝑋𝑁((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙))∃!𝑏 ∈ (𝐿𝑀𝑙)𝑎 = (((𝐿(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝑙)‘𝑏)(〈𝑋, ((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)〉 ∙ ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙))𝐴))) |
| 25 | | eqidd 2735 |
. . . . 5
⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F
𝐹) = (〈𝐷, 𝐸〉 −∘F
𝐹)) |
| 26 | 1, 3, 16, 13, 25 | lanval 49355 |
. . . 4
⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉Lan𝐸)𝑋) = ((〈𝐷, 𝐸〉 −∘F
𝐹)((𝐷 FuncCat 𝐸)UP𝑆)𝑋)) |
| 27 | 26 | breqd 5128 |
. . 3
⊢ (𝜑 → (𝐿(𝐹(〈𝐶, 𝐷〉Lan𝐸)𝑋)𝐴 ↔ 𝐿((〈𝐷, 𝐸〉 −∘F
𝐹)((𝐷 FuncCat 𝐸)UP𝑆)𝑋)𝐴)) |
| 28 | 17 | up1st2ndb 48987 |
. . 3
⊢ (𝜑 → (𝐿((〈𝐷, 𝐸〉 −∘F
𝐹)((𝐷 FuncCat 𝐸)UP𝑆)𝑋)𝐴 ↔ 𝐿(〈(1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹)), (2nd
‘(〈𝐷, 𝐸〉
−∘F 𝐹))〉((𝐷 FuncCat 𝐸)UP𝑆)𝑋)𝐴)) |
| 29 | 27, 28 | bitrd 279 |
. 2
⊢ (𝜑 → (𝐿(𝐹(〈𝐶, 𝐷〉Lan𝐸)𝑋)𝐴 ↔ 𝐿(〈(1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹)), (2nd
‘(〈𝐷, 𝐸〉
−∘F 𝐹))〉((𝐷 FuncCat 𝐸)UP𝑆)𝑋)𝐴)) |
| 30 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → 𝑙 ∈ (𝐷 Func 𝐸)) |
| 31 | | eqidd 2735 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → (1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹)) = (1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))) |
| 32 | 30, 31 | prcof1 49161 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙) = (𝑙 ∘func 𝐹)) |
| 33 | 32 | eqcomd 2740 |
. . . . 5
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → (𝑙 ∘func 𝐹) = ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙)) |
| 34 | 33 | oveq2d 7416 |
. . . 4
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → (𝑋𝑁(𝑙 ∘func 𝐹)) = (𝑋𝑁((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙))) |
| 35 | 21 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿) = (𝐿 ∘func 𝐹)) |
| 36 | 35 | opeq2d 4854 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → 〈𝑋, ((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)〉 = 〈𝑋, (𝐿 ∘func 𝐹)〉) |
| 37 | 32 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙) = (𝑙 ∘func 𝐹)) |
| 38 | 36, 37 | oveq12d 7418 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → (〈𝑋, ((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)〉 ∙ ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙)) = (〈𝑋, (𝐿 ∘func 𝐹)〉 ∙ (𝑙 ∘func 𝐹))) |
| 39 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → 𝑏 ∈ (𝐿𝑀𝑙)) |
| 40 | | eqidd 2735 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → (2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹)) = (2nd
‘(〈𝐷, 𝐸〉
−∘F 𝐹))) |
| 41 | 16 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 42 | 5, 39, 40, 41 | prcof21a 49164 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → ((𝐿(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝑙)‘𝑏) = (𝑏 ∘ (1st ‘𝐹))) |
| 43 | | eqidd 2735 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → 𝐴 = 𝐴) |
| 44 | 38, 42, 43 | oveq123d 7421 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → (((𝐿(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝑙)‘𝑏)(〈𝑋, ((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)〉 ∙ ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙))𝐴) = ((𝑏 ∘ (1st ‘𝐹))(〈𝑋, (𝐿 ∘func 𝐹)〉 ∙ (𝑙 ∘func 𝐹))𝐴)) |
| 45 | 44 | eqcomd 2740 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → ((𝑏 ∘ (1st ‘𝐹))(〈𝑋, (𝐿 ∘func 𝐹)〉 ∙ (𝑙 ∘func 𝐹))𝐴) = (((𝐿(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝑙)‘𝑏)(〈𝑋, ((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)〉 ∙ ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙))𝐴)) |
| 46 | 45 | eqeq2d 2745 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) ∧ 𝑏 ∈ (𝐿𝑀𝑙)) → (𝑎 = ((𝑏 ∘ (1st ‘𝐹))(〈𝑋, (𝐿 ∘func 𝐹)〉 ∙ (𝑙 ∘func 𝐹))𝐴) ↔ 𝑎 = (((𝐿(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝑙)‘𝑏)(〈𝑋, ((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)〉 ∙ ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙))𝐴))) |
| 47 | 46 | reubidva 3373 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))) → (∃!𝑏 ∈ (𝐿𝑀𝑙)𝑎 = ((𝑏 ∘ (1st ‘𝐹))(〈𝑋, (𝐿 ∘func 𝐹)〉 ∙ (𝑙 ∘func 𝐹))𝐴) ↔ ∃!𝑏 ∈ (𝐿𝑀𝑙)𝑎 = (((𝐿(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝑙)‘𝑏)(〈𝑋, ((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)〉 ∙ ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙))𝐴))) |
| 48 | 34, 47 | raleqbidva 3309 |
. . 3
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → (∀𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))∃!𝑏 ∈ (𝐿𝑀𝑙)𝑎 = ((𝑏 ∘ (1st ‘𝐹))(〈𝑋, (𝐿 ∘func 𝐹)〉 ∙ (𝑙 ∘func 𝐹))𝐴) ↔ ∀𝑎 ∈ (𝑋𝑁((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙))∃!𝑏 ∈ (𝐿𝑀𝑙)𝑎 = (((𝐿(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝑙)‘𝑏)(〈𝑋, ((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)〉 ∙ ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙))𝐴))) |
| 49 | 48 | ralbidva 3159 |
. 2
⊢ (𝜑 → (∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))∃!𝑏 ∈ (𝐿𝑀𝑙)𝑎 = ((𝑏 ∘ (1st ‘𝐹))(〈𝑋, (𝐿 ∘func 𝐹)〉 ∙ (𝑙 ∘func 𝐹))𝐴) ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (𝑋𝑁((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙))∃!𝑏 ∈ (𝐿𝑀𝑙)𝑎 = (((𝐿(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝑙)‘𝑏)(〈𝑋, ((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)〉 ∙ ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙))𝐴))) |
| 50 | 24, 29, 49 | 3bitr4d 311 |
1
⊢ (𝜑 → (𝐿(𝐹(〈𝐶, 𝐷〉Lan𝐸)𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (𝑋𝑁(𝑙 ∘func 𝐹))∃!𝑏 ∈ (𝐿𝑀𝑙)𝑎 = ((𝑏 ∘ (1st ‘𝐹))(〈𝑋, (𝐿 ∘func 𝐹)〉 ∙ (𝑙 ∘func 𝐹))𝐴))) |