Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  latnlemlt Structured version   Visualization version   GIF version

Theorem latnlemlt 17775
 Description: Negation of "less than or equal to" expressed in terms of meet and less-than. (nssinpss 4164 analog.) (Contributed by NM, 5-Feb-2012.)
Hypotheses
Ref Expression
latnlemlt.b 𝐵 = (Base‘𝐾)
latnlemlt.l = (le‘𝐾)
latnlemlt.s < = (lt‘𝐾)
latnlemlt.m = (meet‘𝐾)
Assertion
Ref Expression
latnlemlt ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ (𝑋 𝑌) < 𝑋))

Proof of Theorem latnlemlt
StepHypRef Expression
1 latnlemlt.b . . . 4 𝐵 = (Base‘𝐾)
2 latnlemlt.l . . . 4 = (le‘𝐾)
3 latnlemlt.m . . . 4 = (meet‘𝐾)
41, 2, 3latmle1 17767 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
54biantrurd 536 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) ≠ 𝑋 ↔ ((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) ≠ 𝑋)))
61, 2, 3latleeqm1 17770 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
76necon3bbid 2989 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ (𝑋 𝑌) ≠ 𝑋))
8 simp1 1134 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
91, 3latmcl 17743 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
10 simp2 1135 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
11 latnlemlt.s . . . 4 < = (lt‘𝐾)
122, 11pltval 17651 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 𝑌) < 𝑋 ↔ ((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) ≠ 𝑋)))
138, 9, 10, 12syl3anc 1369 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) < 𝑋 ↔ ((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑌) ≠ 𝑋)))
145, 7, 133bitr4d 314 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ (𝑋 𝑌) < 𝑋))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952   class class class wbr 5037  ‘cfv 6341  (class class class)co 7157  Basecbs 16556  lecple 16645  ltcplt 17632  meetcmee 17636  Latclat 17736 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-id 5435  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-proset 17619  df-poset 17637  df-plt 17649  df-lub 17665  df-glb 17666  df-join 17667  df-meet 17668  df-lat 17737 This theorem is referenced by:  hlrelat2  37015
 Copyright terms: Public domain W3C validator