Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latnlemlt | Structured version Visualization version GIF version |
Description: Negation of "less than or equal to" expressed in terms of meet and less-than. (nssinpss 4164 analog.) (Contributed by NM, 5-Feb-2012.) |
Ref | Expression |
---|---|
latnlemlt.b | ⊢ 𝐵 = (Base‘𝐾) |
latnlemlt.l | ⊢ ≤ = (le‘𝐾) |
latnlemlt.s | ⊢ < = (lt‘𝐾) |
latnlemlt.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latnlemlt | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) < 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latnlemlt.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latnlemlt.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | latnlemlt.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | 1, 2, 3 | latmle1 17767 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
5 | 4 | biantrurd 536 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ 𝑌) ≠ 𝑋 ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≠ 𝑋))) |
6 | 1, 2, 3 | latleeqm1 17770 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
7 | 6 | necon3bbid 2989 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) ≠ 𝑋)) |
8 | simp1 1134 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
9 | 1, 3 | latmcl 17743 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
10 | simp2 1135 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
11 | latnlemlt.s | . . . 4 ⊢ < = (lt‘𝐾) | |
12 | 2, 11 | pltval 17651 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑋 ∧ 𝑌) < 𝑋 ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≠ 𝑋))) |
13 | 8, 9, 10, 12 | syl3anc 1369 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ 𝑌) < 𝑋 ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≠ 𝑋))) |
14 | 5, 7, 13 | 3bitr4d 314 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) < 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 class class class wbr 5037 ‘cfv 6341 (class class class)co 7157 Basecbs 16556 lecple 16645 ltcplt 17632 meetcmee 17636 Latclat 17736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-proset 17619 df-poset 17637 df-plt 17649 df-lub 17665 df-glb 17666 df-join 17667 df-meet 17668 df-lat 17737 |
This theorem is referenced by: hlrelat2 37015 |
Copyright terms: Public domain | W3C validator |