MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latnle Structured version   Visualization version   GIF version

Theorem latnle 17524
Description: Equivalent expressions for "not less than" in a lattice. (chnle 28982 analog.) (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
latnle.b 𝐵 = (Base‘𝐾)
latnle.l = (le‘𝐾)
latnle.s < = (lt‘𝐾)
latnle.j = (join‘𝐾)
Assertion
Ref Expression
latnle ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 < (𝑋 𝑌)))

Proof of Theorem latnle
StepHypRef Expression
1 latnle.b . . . 4 𝐵 = (Base‘𝐾)
2 latnle.l . . . 4 = (le‘𝐾)
3 latnle.j . . . 4 = (join‘𝐾)
41, 2, 3latlej1 17499 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 (𝑋 𝑌))
54biantrurd 533 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ≠ (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
61, 2, 3latleeqj1 17502 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ (𝑌 𝑋) = 𝑋))
763com23 1119 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋 ↔ (𝑌 𝑋) = 𝑋))
8 eqcom 2802 . . . . 5 ((𝑌 𝑋) = 𝑋𝑋 = (𝑌 𝑋))
97, 8syl6bb 288 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋𝑋 = (𝑌 𝑋)))
101, 3latjcom 17498 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
1110eqeq2d 2805 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = (𝑋 𝑌) ↔ 𝑋 = (𝑌 𝑋)))
129, 11bitr4d 283 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋𝑋 = (𝑋 𝑌)))
1312necon3bbid 3021 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 ≠ (𝑋 𝑌)))
141, 3latjcl 17490 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
15 latnle.s . . . 4 < = (lt‘𝐾)
162, 15pltval 17399 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑋 < (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
1714, 16syld3an3 1402 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
185, 13, 173bitr4d 312 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 < (𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4962  cfv 6225  (class class class)co 7016  Basecbs 16312  lecple 16401  ltcplt 17380  joincjn 17383  Latclat 17484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-lat 17485
This theorem is referenced by:  cvlcvr1  36006  hlrelat  36069  hlrelat2  36070  cvr2N  36078  cvrexchlem  36086
  Copyright terms: Public domain W3C validator