| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latnle | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions for "not less than" in a lattice. (chnle 31443 analog.) (Contributed by NM, 16-Nov-2011.) |
| Ref | Expression |
|---|---|
| latnle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latnle.l | ⊢ ≤ = (le‘𝐾) |
| latnle.s | ⊢ < = (lt‘𝐾) |
| latnle.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latnle | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latnle.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latnle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | latnle.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | 1, 2, 3 | latlej1 18407 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| 5 | 4 | biantrurd 532 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≠ (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
| 6 | 1, 2, 3 | latleeqj1 18410 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ (𝑌 ∨ 𝑋) = 𝑋)) |
| 7 | 6 | 3com23 1126 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ (𝑌 ∨ 𝑋) = 𝑋)) |
| 8 | eqcom 2736 | . . . . 5 ⊢ ((𝑌 ∨ 𝑋) = 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑋)) | |
| 9 | 7, 8 | bitrdi 287 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑋))) |
| 10 | 1, 3 | latjcom 18406 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 11 | 10 | eqeq2d 2740 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = (𝑋 ∨ 𝑌) ↔ 𝑋 = (𝑌 ∨ 𝑋))) |
| 12 | 9, 11 | bitr4d 282 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ 𝑋 = (𝑋 ∨ 𝑌))) |
| 13 | 12 | necon3bbid 2962 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 ≠ (𝑋 ∨ 𝑌))) |
| 14 | 1, 3 | latjcl 18398 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 15 | latnle.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 16 | 2, 15 | pltval 18291 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵) → (𝑋 < (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
| 17 | 14, 16 | syld3an3 1411 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
| 18 | 5, 13, 17 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 ltcplt 18269 joincjn 18272 Latclat 18390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-lat 18391 |
| This theorem is referenced by: cvlcvr1 39332 hlrelat 39396 hlrelat2 39397 cvr2N 39405 cvrexchlem 39413 |
| Copyright terms: Public domain | W3C validator |