![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latnle | Structured version Visualization version GIF version |
Description: Equivalent expressions for "not less than" in a lattice. (chnle 28982 analog.) (Contributed by NM, 16-Nov-2011.) |
Ref | Expression |
---|---|
latnle.b | ⊢ 𝐵 = (Base‘𝐾) |
latnle.l | ⊢ ≤ = (le‘𝐾) |
latnle.s | ⊢ < = (lt‘𝐾) |
latnle.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latnle | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latnle.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latnle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | latnle.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | 1, 2, 3 | latlej1 17499 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
5 | 4 | biantrurd 533 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≠ (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
6 | 1, 2, 3 | latleeqj1 17502 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ (𝑌 ∨ 𝑋) = 𝑋)) |
7 | 6 | 3com23 1119 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ (𝑌 ∨ 𝑋) = 𝑋)) |
8 | eqcom 2802 | . . . . 5 ⊢ ((𝑌 ∨ 𝑋) = 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑋)) | |
9 | 7, 8 | syl6bb 288 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑋))) |
10 | 1, 3 | latjcom 17498 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
11 | 10 | eqeq2d 2805 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = (𝑋 ∨ 𝑌) ↔ 𝑋 = (𝑌 ∨ 𝑋))) |
12 | 9, 11 | bitr4d 283 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ 𝑋 = (𝑋 ∨ 𝑌))) |
13 | 12 | necon3bbid 3021 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 ≠ (𝑋 ∨ 𝑌))) |
14 | 1, 3 | latjcl 17490 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
15 | latnle.s | . . . 4 ⊢ < = (lt‘𝐾) | |
16 | 2, 15 | pltval 17399 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵) → (𝑋 < (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
17 | 14, 16 | syld3an3 1402 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
18 | 5, 13, 17 | 3bitr4d 312 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 class class class wbr 4962 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 lecple 16401 ltcplt 17380 joincjn 17383 Latclat 17484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-proset 17367 df-poset 17385 df-plt 17397 df-lub 17413 df-glb 17414 df-join 17415 df-meet 17416 df-lat 17485 |
This theorem is referenced by: cvlcvr1 36006 hlrelat 36069 hlrelat2 36070 cvr2N 36078 cvrexchlem 36086 |
Copyright terms: Public domain | W3C validator |