| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latnle | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions for "not less than" in a lattice. (chnle 31500 analog.) (Contributed by NM, 16-Nov-2011.) |
| Ref | Expression |
|---|---|
| latnle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latnle.l | ⊢ ≤ = (le‘𝐾) |
| latnle.s | ⊢ < = (lt‘𝐾) |
| latnle.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latnle | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latnle.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latnle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | latnle.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | 1, 2, 3 | latlej1 18463 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| 5 | 4 | biantrurd 532 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≠ (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
| 6 | 1, 2, 3 | latleeqj1 18466 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ (𝑌 ∨ 𝑋) = 𝑋)) |
| 7 | 6 | 3com23 1126 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ (𝑌 ∨ 𝑋) = 𝑋)) |
| 8 | eqcom 2743 | . . . . 5 ⊢ ((𝑌 ∨ 𝑋) = 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑋)) | |
| 9 | 7, 8 | bitrdi 287 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑋))) |
| 10 | 1, 3 | latjcom 18462 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
| 11 | 10 | eqeq2d 2747 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = (𝑋 ∨ 𝑌) ↔ 𝑋 = (𝑌 ∨ 𝑋))) |
| 12 | 9, 11 | bitr4d 282 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ 𝑋 = (𝑋 ∨ 𝑌))) |
| 13 | 12 | necon3bbid 2970 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 ≠ (𝑋 ∨ 𝑌))) |
| 14 | 1, 3 | latjcl 18454 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 15 | latnle.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 16 | 2, 15 | pltval 18347 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵) → (𝑋 < (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
| 17 | 14, 16 | syld3an3 1411 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
| 18 | 5, 13, 17 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 ltcplt 18325 joincjn 18328 Latclat 18446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-lat 18447 |
| This theorem is referenced by: cvlcvr1 39362 hlrelat 39426 hlrelat2 39427 cvr2N 39435 cvrexchlem 39443 |
| Copyright terms: Public domain | W3C validator |