MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latnle Structured version   Visualization version   GIF version

Theorem latnle 18191
Description: Equivalent expressions for "not less than" in a lattice. (chnle 29876 analog.) (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
latnle.b 𝐵 = (Base‘𝐾)
latnle.l = (le‘𝐾)
latnle.s < = (lt‘𝐾)
latnle.j = (join‘𝐾)
Assertion
Ref Expression
latnle ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 < (𝑋 𝑌)))

Proof of Theorem latnle
StepHypRef Expression
1 latnle.b . . . 4 𝐵 = (Base‘𝐾)
2 latnle.l . . . 4 = (le‘𝐾)
3 latnle.j . . . 4 = (join‘𝐾)
41, 2, 3latlej1 18166 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 (𝑋 𝑌))
54biantrurd 533 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ≠ (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
61, 2, 3latleeqj1 18169 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ (𝑌 𝑋) = 𝑋))
763com23 1125 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋 ↔ (𝑌 𝑋) = 𝑋))
8 eqcom 2745 . . . . 5 ((𝑌 𝑋) = 𝑋𝑋 = (𝑌 𝑋))
97, 8bitrdi 287 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋𝑋 = (𝑌 𝑋)))
101, 3latjcom 18165 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
1110eqeq2d 2749 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = (𝑋 𝑌) ↔ 𝑋 = (𝑌 𝑋)))
129, 11bitr4d 281 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋𝑋 = (𝑋 𝑌)))
1312necon3bbid 2981 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 ≠ (𝑋 𝑌)))
141, 3latjcl 18157 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
15 latnle.s . . . 4 < = (lt‘𝐾)
162, 15pltval 18050 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑋 < (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
1714, 16syld3an3 1408 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
185, 13, 173bitr4d 311 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 < (𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  ltcplt 18026  joincjn 18029  Latclat 18149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150
This theorem is referenced by:  cvlcvr1  37353  hlrelat  37416  hlrelat2  37417  cvr2N  37425  cvrexchlem  37433
  Copyright terms: Public domain W3C validator