Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latnle | Structured version Visualization version GIF version |
Description: Equivalent expressions for "not less than" in a lattice. (chnle 29876 analog.) (Contributed by NM, 16-Nov-2011.) |
Ref | Expression |
---|---|
latnle.b | ⊢ 𝐵 = (Base‘𝐾) |
latnle.l | ⊢ ≤ = (le‘𝐾) |
latnle.s | ⊢ < = (lt‘𝐾) |
latnle.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latnle | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latnle.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latnle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | latnle.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | 1, 2, 3 | latlej1 18166 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
5 | 4 | biantrurd 533 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≠ (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
6 | 1, 2, 3 | latleeqj1 18169 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ (𝑌 ∨ 𝑋) = 𝑋)) |
7 | 6 | 3com23 1125 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ (𝑌 ∨ 𝑋) = 𝑋)) |
8 | eqcom 2745 | . . . . 5 ⊢ ((𝑌 ∨ 𝑋) = 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑋)) | |
9 | 7, 8 | bitrdi 287 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑋))) |
10 | 1, 3 | latjcom 18165 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
11 | 10 | eqeq2d 2749 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = (𝑋 ∨ 𝑌) ↔ 𝑋 = (𝑌 ∨ 𝑋))) |
12 | 9, 11 | bitr4d 281 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ 𝑋 = (𝑋 ∨ 𝑌))) |
13 | 12 | necon3bbid 2981 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 ≠ (𝑋 ∨ 𝑌))) |
14 | 1, 3 | latjcl 18157 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
15 | latnle.s | . . . 4 ⊢ < = (lt‘𝐾) | |
16 | 2, 15 | pltval 18050 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵) → (𝑋 < (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
17 | 14, 16 | syld3an3 1408 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
18 | 5, 13, 17 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 ltcplt 18026 joincjn 18029 Latclat 18149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-lat 18150 |
This theorem is referenced by: cvlcvr1 37353 hlrelat 37416 hlrelat2 37417 cvr2N 37425 cvrexchlem 37433 |
Copyright terms: Public domain | W3C validator |