MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latnle Structured version   Visualization version   GIF version

Theorem latnle 18488
Description: Equivalent expressions for "not less than" in a lattice. (chnle 31500 analog.) (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
latnle.b 𝐵 = (Base‘𝐾)
latnle.l = (le‘𝐾)
latnle.s < = (lt‘𝐾)
latnle.j = (join‘𝐾)
Assertion
Ref Expression
latnle ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 < (𝑋 𝑌)))

Proof of Theorem latnle
StepHypRef Expression
1 latnle.b . . . 4 𝐵 = (Base‘𝐾)
2 latnle.l . . . 4 = (le‘𝐾)
3 latnle.j . . . 4 = (join‘𝐾)
41, 2, 3latlej1 18463 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 (𝑋 𝑌))
54biantrurd 532 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ≠ (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
61, 2, 3latleeqj1 18466 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ (𝑌 𝑋) = 𝑋))
763com23 1126 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋 ↔ (𝑌 𝑋) = 𝑋))
8 eqcom 2743 . . . . 5 ((𝑌 𝑋) = 𝑋𝑋 = (𝑌 𝑋))
97, 8bitrdi 287 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋𝑋 = (𝑌 𝑋)))
101, 3latjcom 18462 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
1110eqeq2d 2747 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = (𝑋 𝑌) ↔ 𝑋 = (𝑌 𝑋)))
129, 11bitr4d 282 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋𝑋 = (𝑋 𝑌)))
1312necon3bbid 2970 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 ≠ (𝑋 𝑌)))
141, 3latjcl 18454 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
15 latnle.s . . . 4 < = (lt‘𝐾)
162, 15pltval 18347 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑋 < (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
1714, 16syld3an3 1411 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
185, 13, 173bitr4d 311 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 < (𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  ltcplt 18325  joincjn 18328  Latclat 18446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-lat 18447
This theorem is referenced by:  cvlcvr1  39362  hlrelat  39426  hlrelat2  39427  cvr2N  39435  cvrexchlem  39443
  Copyright terms: Public domain W3C validator