MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latnle Structured version   Visualization version   GIF version

Theorem latnle 18106
Description: Equivalent expressions for "not less than" in a lattice. (chnle 29777 analog.) (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
latnle.b 𝐵 = (Base‘𝐾)
latnle.l = (le‘𝐾)
latnle.s < = (lt‘𝐾)
latnle.j = (join‘𝐾)
Assertion
Ref Expression
latnle ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 < (𝑋 𝑌)))

Proof of Theorem latnle
StepHypRef Expression
1 latnle.b . . . 4 𝐵 = (Base‘𝐾)
2 latnle.l . . . 4 = (le‘𝐾)
3 latnle.j . . . 4 = (join‘𝐾)
41, 2, 3latlej1 18081 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 (𝑋 𝑌))
54biantrurd 532 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ≠ (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
61, 2, 3latleeqj1 18084 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ (𝑌 𝑋) = 𝑋))
763com23 1124 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋 ↔ (𝑌 𝑋) = 𝑋))
8 eqcom 2745 . . . . 5 ((𝑌 𝑋) = 𝑋𝑋 = (𝑌 𝑋))
97, 8bitrdi 286 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋𝑋 = (𝑌 𝑋)))
101, 3latjcom 18080 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
1110eqeq2d 2749 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = (𝑋 𝑌) ↔ 𝑋 = (𝑌 𝑋)))
129, 11bitr4d 281 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋𝑋 = (𝑋 𝑌)))
1312necon3bbid 2980 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 ≠ (𝑋 𝑌)))
141, 3latjcl 18072 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
15 latnle.s . . . 4 < = (lt‘𝐾)
162, 15pltval 17965 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑋 < (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
1714, 16syld3an3 1407 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < (𝑋 𝑌) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑋 ≠ (𝑋 𝑌))))
185, 13, 173bitr4d 310 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋𝑋 < (𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  ltcplt 17941  joincjn 17944  Latclat 18064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-lat 18065
This theorem is referenced by:  cvlcvr1  37280  hlrelat  37343  hlrelat2  37344  cvr2N  37352  cvrexchlem  37360
  Copyright terms: Public domain W3C validator