![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latnle | Structured version Visualization version GIF version |
Description: Equivalent expressions for "not less than" in a lattice. (chnle 31543 analog.) (Contributed by NM, 16-Nov-2011.) |
Ref | Expression |
---|---|
latnle.b | ⊢ 𝐵 = (Base‘𝐾) |
latnle.l | ⊢ ≤ = (le‘𝐾) |
latnle.s | ⊢ < = (lt‘𝐾) |
latnle.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latnle | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latnle.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latnle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | latnle.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | 1, 2, 3 | latlej1 18506 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
5 | 4 | biantrurd 532 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≠ (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
6 | 1, 2, 3 | latleeqj1 18509 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ (𝑌 ∨ 𝑋) = 𝑋)) |
7 | 6 | 3com23 1125 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ (𝑌 ∨ 𝑋) = 𝑋)) |
8 | eqcom 2742 | . . . . 5 ⊢ ((𝑌 ∨ 𝑋) = 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑋)) | |
9 | 7, 8 | bitrdi 287 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑋))) |
10 | 1, 3 | latjcom 18505 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
11 | 10 | eqeq2d 2746 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = (𝑋 ∨ 𝑌) ↔ 𝑋 = (𝑌 ∨ 𝑋))) |
12 | 9, 11 | bitr4d 282 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ 𝑋 = (𝑋 ∨ 𝑌))) |
13 | 12 | necon3bbid 2976 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 ≠ (𝑋 ∨ 𝑌))) |
14 | 1, 3 | latjcl 18497 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
15 | latnle.s | . . . 4 ⊢ < = (lt‘𝐾) | |
16 | 2, 15 | pltval 18390 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵) → (𝑋 < (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
17 | 14, 16 | syld3an3 1408 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < (𝑋 ∨ 𝑌) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑋 ≠ (𝑋 ∨ 𝑌)))) |
18 | 5, 13, 17 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lecple 17305 ltcplt 18366 joincjn 18369 Latclat 18489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-lat 18490 |
This theorem is referenced by: cvlcvr1 39321 hlrelat 39385 hlrelat2 39386 cvr2N 39394 cvrexchlem 39402 |
Copyright terms: Public domain | W3C validator |