| Step | Hyp | Ref
| Expression |
| 1 | | lmdpropd.3 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 2 | | lmdpropd.4 |
. . . 4
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 3 | | lmdpropd.1 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 4 | | lmdpropd.2 |
. . . 4
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |
| 5 | | lmdpropd.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 6 | | lmdpropd.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 7 | | lmdpropd.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 8 | | lmdpropd.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | funcpropd 17870 |
. . 3
⊢ (𝜑 → (𝐶 Func 𝐴) = (𝐷 Func 𝐵)) |
| 10 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 11 | 10 | oppchomfpropd 17693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (Homf
‘(oppCat‘𝐴)) =
(Homf ‘(oppCat‘𝐵))) |
| 12 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) →
(compf‘𝐴) = (compf‘𝐵)) |
| 13 | 10, 12 | oppccomfpropd 17694 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) →
(compf‘(oppCat‘𝐴)) =
(compf‘(oppCat‘𝐵))) |
| 14 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 15 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) →
(compf‘𝐶) = (compf‘𝐷)) |
| 16 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → 𝑓 ∈ (𝐶 Func 𝐴)) |
| 17 | 16 | func1st2nd 49053 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (1st ‘𝑓)(𝐶 Func 𝐴)(2nd ‘𝑓)) |
| 18 | 17 | funcrcl2 49056 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → 𝐶 ∈ Cat) |
| 19 | 9 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (𝐶 Func 𝐴) = (𝐷 Func 𝐵)) |
| 20 | 16, 19 | eleqtrd 2831 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → 𝑓 ∈ (𝐷 Func 𝐵)) |
| 21 | 20 | func1st2nd 49053 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (1st ‘𝑓)(𝐷 Func 𝐵)(2nd ‘𝑓)) |
| 22 | 21 | funcrcl2 49056 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → 𝐷 ∈ Cat) |
| 23 | 17 | funcrcl3 49057 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → 𝐴 ∈ Cat) |
| 24 | 21 | funcrcl3 49057 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → 𝐵 ∈ Cat) |
| 25 | 14, 15, 10, 12, 18, 22, 23, 24 | fucpropd 17948 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (𝐶 FuncCat 𝐴) = (𝐷 FuncCat 𝐵)) |
| 26 | 25 | fveq2d 6864 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (Homf
‘(𝐶 FuncCat 𝐴)) = (Homf
‘(𝐷 FuncCat 𝐵))) |
| 27 | 26 | oppchomfpropd 17693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (Homf
‘(oppCat‘(𝐶
FuncCat 𝐴))) =
(Homf ‘(oppCat‘(𝐷 FuncCat 𝐵)))) |
| 28 | 25 | fveq2d 6864 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) →
(compf‘(𝐶 FuncCat 𝐴)) = (compf‘(𝐷 FuncCat 𝐵))) |
| 29 | 26, 28 | oppccomfpropd 17694 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) →
(compf‘(oppCat‘(𝐶 FuncCat 𝐴))) =
(compf‘(oppCat‘(𝐷 FuncCat 𝐵)))) |
| 30 | | fvexd 6875 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (oppCat‘𝐴) ∈ V) |
| 31 | | fvexd 6875 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (oppCat‘𝐵) ∈ V) |
| 32 | | fvexd 6875 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (oppCat‘(𝐶 FuncCat 𝐴)) ∈ V) |
| 33 | | fvexd 6875 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (oppCat‘(𝐷 FuncCat 𝐵)) ∈ V) |
| 34 | 11, 13, 27, 29, 30, 31, 32, 33 | uppropd 49154 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → ((oppCat‘𝐴) UP (oppCat‘(𝐶 FuncCat 𝐴))) = ((oppCat‘𝐵) UP (oppCat‘(𝐷 FuncCat 𝐵)))) |
| 35 | 10, 12, 14, 15, 23, 24, 18, 22 | diagpropd 49263 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (𝐴Δfunc𝐶) = (𝐵Δfunc𝐷)) |
| 36 | 35 | fveq2d 6864 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → (oppFunc‘(𝐴Δfunc𝐶)) = (oppFunc‘(𝐵Δfunc𝐷))) |
| 37 | | eqidd 2731 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → 𝑓 = 𝑓) |
| 38 | 34, 36, 37 | oveq123d 7410 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐴)) → ((oppFunc‘(𝐴Δfunc𝐶))((oppCat‘𝐴) UP (oppCat‘(𝐶 FuncCat 𝐴)))𝑓) = ((oppFunc‘(𝐵Δfunc𝐷))((oppCat‘𝐵) UP (oppCat‘(𝐷 FuncCat 𝐵)))𝑓)) |
| 39 | 9, 38 | mpteq12dva 5195 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐶 Func 𝐴) ↦ ((oppFunc‘(𝐴Δfunc𝐶))((oppCat‘𝐴) UP (oppCat‘(𝐶 FuncCat 𝐴)))𝑓)) = (𝑓 ∈ (𝐷 Func 𝐵) ↦ ((oppFunc‘(𝐵Δfunc𝐷))((oppCat‘𝐵) UP (oppCat‘(𝐷 FuncCat 𝐵)))𝑓))) |
| 40 | | lmdfval 49617 |
. 2
⊢ (𝐴 Limit 𝐶) = (𝑓 ∈ (𝐶 Func 𝐴) ↦ ((oppFunc‘(𝐴Δfunc𝐶))((oppCat‘𝐴) UP (oppCat‘(𝐶 FuncCat 𝐴)))𝑓)) |
| 41 | | lmdfval 49617 |
. 2
⊢ (𝐵 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐵) ↦ ((oppFunc‘(𝐵Δfunc𝐷))((oppCat‘𝐵) UP (oppCat‘(𝐷 FuncCat 𝐵)))𝑓)) |
| 42 | 39, 40, 41 | 3eqtr4g 2790 |
1
⊢ (𝜑 → (𝐴 Limit 𝐶) = (𝐵 Limit 𝐷)) |