Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmod0cl | Structured version Visualization version GIF version |
Description: The ring zero in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmod0cl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmod0cl.k | ⊢ 𝐾 = (Base‘𝐹) |
lmod0cl.z | ⊢ 0 = (0g‘𝐹) |
Ref | Expression |
---|---|
lmod0cl | ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmod0cl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodring 20238 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
3 | lmod0cl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
4 | lmod0cl.z | . . 3 ⊢ 0 = (0g‘𝐹) | |
5 | 3, 4 | ring0cl 19904 | . 2 ⊢ (𝐹 ∈ Ring → 0 ∈ 𝐾) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6480 Basecbs 17010 Scalarcsca 17063 0gc0g 17248 Ringcrg 19879 LModclmod 20230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6432 df-fun 6482 df-fv 6488 df-riota 7294 df-ov 7341 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-ring 19881 df-lmod 20232 |
This theorem is referenced by: lmodfopnelem2 20267 lmodfopne 20268 lss1d 20332 lspsolvlem 20511 iporthcom 20947 lfl0f 37387 lfl1dim 37439 lfl1dim2N 37440 lkrss2N 37487 baerlem5blem1 40028 hdmap14lem2a 40186 hdmap14lem4a 40190 hdmap14lem6 40192 hgmapval0 40211 hgmapeq0 40223 lincval1 46178 lcosn0 46179 lincvalsc0 46180 lcoc0 46181 linc1 46184 lcoss 46195 el0ldep 46225 |
Copyright terms: Public domain | W3C validator |