MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0cl Structured version   Visualization version   GIF version

Theorem lmod0cl 20845
Description: The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0cl.f 𝐹 = (Scalar‘𝑊)
lmod0cl.k 𝐾 = (Base‘𝐹)
lmod0cl.z 0 = (0g𝐹)
Assertion
Ref Expression
lmod0cl (𝑊 ∈ LMod → 0𝐾)

Proof of Theorem lmod0cl
StepHypRef Expression
1 lmod0cl.f . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 20825 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 lmod0cl.k . . 3 𝐾 = (Base‘𝐹)
4 lmod0cl.z . . 3 0 = (0g𝐹)
53, 4ring0cl 20227 . 2 (𝐹 ∈ Ring → 0𝐾)
62, 5syl 17 1 (𝑊 ∈ LMod → 0𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6531  Basecbs 17228  Scalarcsca 17274  0gc0g 17453  Ringcrg 20193  LModclmod 20817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-riota 7362  df-ov 7408  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-ring 20195  df-lmod 20819
This theorem is referenced by:  lmodfopnelem2  20856  lmodfopne  20857  lss1d  20920  lspsolvlem  21103  iporthcom  21595  lfl0f  39087  lfl1dim  39139  lfl1dim2N  39140  lkrss2N  39187  baerlem5blem1  41728  hdmap14lem2a  41886  hdmap14lem4a  41890  hdmap14lem6  41892  hgmapval0  41911  hgmapeq0  41923  lincval1  48395  lcosn0  48396  lincvalsc0  48397  lcoc0  48398  linc1  48401  lcoss  48412  el0ldep  48442
  Copyright terms: Public domain W3C validator