| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmod0cl | Structured version Visualization version GIF version | ||
| Description: The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0cl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmod0cl.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmod0cl.z | ⊢ 0 = (0g‘𝐹) |
| Ref | Expression |
|---|---|
| lmod0cl | ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmod0cl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 20825 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | lmod0cl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | lmod0cl.z | . . 3 ⊢ 0 = (0g‘𝐹) | |
| 5 | 3, 4 | ring0cl 20227 | . 2 ⊢ (𝐹 ∈ Ring → 0 ∈ 𝐾) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 Basecbs 17228 Scalarcsca 17274 0gc0g 17453 Ringcrg 20193 LModclmod 20817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-ring 20195 df-lmod 20819 |
| This theorem is referenced by: lmodfopnelem2 20856 lmodfopne 20857 lss1d 20920 lspsolvlem 21103 iporthcom 21595 lfl0f 39087 lfl1dim 39139 lfl1dim2N 39140 lkrss2N 39187 baerlem5blem1 41728 hdmap14lem2a 41886 hdmap14lem4a 41890 hdmap14lem6 41892 hgmapval0 41911 hgmapeq0 41923 lincval1 48395 lcosn0 48396 lincvalsc0 48397 lcoc0 48398 linc1 48401 lcoss 48412 el0ldep 48442 |
| Copyright terms: Public domain | W3C validator |