MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0cl Structured version   Visualization version   GIF version

Theorem lmod0cl 20864
Description: The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0cl.f 𝐹 = (Scalar‘𝑊)
lmod0cl.k 𝐾 = (Base‘𝐹)
lmod0cl.z 0 = (0g𝐹)
Assertion
Ref Expression
lmod0cl (𝑊 ∈ LMod → 0𝐾)

Proof of Theorem lmod0cl
StepHypRef Expression
1 lmod0cl.f . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 20844 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 lmod0cl.k . . 3 𝐾 = (Base‘𝐹)
4 lmod0cl.z . . 3 0 = (0g𝐹)
53, 4ring0cl 20246 . 2 (𝐹 ∈ Ring → 0𝐾)
62, 5syl 17 1 (𝑊 ∈ LMod → 0𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6554  Basecbs 17213  Scalarcsca 17269  0gc0g 17454  Ringcrg 20216  LModclmod 20836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6506  df-fun 6556  df-fv 6562  df-riota 7380  df-ov 7427  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-ring 20218  df-lmod 20838
This theorem is referenced by:  lmodfopnelem2  20875  lmodfopne  20876  lss1d  20940  lspsolvlem  21123  iporthcom  21631  lfl0f  38767  lfl1dim  38819  lfl1dim2N  38820  lkrss2N  38867  baerlem5blem1  41408  hdmap14lem2a  41566  hdmap14lem4a  41570  hdmap14lem6  41572  hgmapval0  41591  hgmapeq0  41603  lincval1  47802  lcosn0  47803  lincvalsc0  47804  lcoc0  47805  linc1  47808  lcoss  47819  el0ldep  47849
  Copyright terms: Public domain W3C validator