Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmod0cl | Structured version Visualization version GIF version |
Description: The ring zero in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmod0cl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmod0cl.k | ⊢ 𝐾 = (Base‘𝐹) |
lmod0cl.z | ⊢ 0 = (0g‘𝐹) |
Ref | Expression |
---|---|
lmod0cl | ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmod0cl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodring 20131 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
3 | lmod0cl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
4 | lmod0cl.z | . . 3 ⊢ 0 = (0g‘𝐹) | |
5 | 3, 4 | ring0cl 19808 | . 2 ⊢ (𝐹 ∈ Ring → 0 ∈ 𝐾) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 Basecbs 16912 Scalarcsca 16965 0gc0g 17150 Ringcrg 19783 LModclmod 20123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-ring 19785 df-lmod 20125 |
This theorem is referenced by: lmodfopnelem2 20160 lmodfopne 20161 lss1d 20225 lspsolvlem 20404 iporthcom 20840 lfl0f 37083 lfl1dim 37135 lfl1dim2N 37136 lkrss2N 37183 baerlem5blem1 39723 hdmap14lem2a 39881 hdmap14lem4a 39885 hdmap14lem6 39887 hgmapval0 39906 hgmapeq0 39918 lincval1 45760 lcosn0 45761 lincvalsc0 45762 lcoc0 45763 linc1 45766 lcoss 45777 el0ldep 45807 |
Copyright terms: Public domain | W3C validator |