MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0cl Structured version   Visualization version   GIF version

Theorem lmod0cl 20064
Description: The ring zero in a left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0cl.f 𝐹 = (Scalar‘𝑊)
lmod0cl.k 𝐾 = (Base‘𝐹)
lmod0cl.z 0 = (0g𝐹)
Assertion
Ref Expression
lmod0cl (𝑊 ∈ LMod → 0𝐾)

Proof of Theorem lmod0cl
StepHypRef Expression
1 lmod0cl.f . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 20046 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 lmod0cl.k . . 3 𝐾 = (Base‘𝐹)
4 lmod0cl.z . . 3 0 = (0g𝐹)
53, 4ring0cl 19723 . 2 (𝐹 ∈ Ring → 0𝐾)
62, 5syl 17 1 (𝑊 ∈ LMod → 0𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  Basecbs 16840  Scalarcsca 16891  0gc0g 17067  Ringcrg 19698  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-riota 7212  df-ov 7258  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ring 19700  df-lmod 20040
This theorem is referenced by:  lmodfopnelem2  20075  lmodfopne  20076  lss1d  20140  lspsolvlem  20319  iporthcom  20752  lfl0f  37010  lfl1dim  37062  lfl1dim2N  37063  lkrss2N  37110  baerlem5blem1  39650  hdmap14lem2a  39808  hdmap14lem4a  39812  hdmap14lem6  39814  hgmapval0  39833  hgmapeq0  39845  lincval1  45648  lcosn0  45649  lincvalsc0  45650  lcoc0  45651  linc1  45654  lcoss  45665  el0ldep  45695
  Copyright terms: Public domain W3C validator