MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0cl Structured version   Visualization version   GIF version

Theorem lmod0cl 20908
Description: The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0cl.f 𝐹 = (Scalar‘𝑊)
lmod0cl.k 𝐾 = (Base‘𝐹)
lmod0cl.z 0 = (0g𝐹)
Assertion
Ref Expression
lmod0cl (𝑊 ∈ LMod → 0𝐾)

Proof of Theorem lmod0cl
StepHypRef Expression
1 lmod0cl.f . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 20888 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 lmod0cl.k . . 3 𝐾 = (Base‘𝐹)
4 lmod0cl.z . . 3 0 = (0g𝐹)
53, 4ring0cl 20290 . 2 (𝐹 ∈ Ring → 0𝐾)
62, 5syl 17 1 (𝑊 ∈ LMod → 0𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  Basecbs 17258  Scalarcsca 17314  0gc0g 17499  Ringcrg 20260  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ring 20262  df-lmod 20882
This theorem is referenced by:  lmodfopnelem2  20919  lmodfopne  20920  lss1d  20984  lspsolvlem  21167  iporthcom  21676  lfl0f  39025  lfl1dim  39077  lfl1dim2N  39078  lkrss2N  39125  baerlem5blem1  41666  hdmap14lem2a  41824  hdmap14lem4a  41828  hdmap14lem6  41830  hgmapval0  41849  hgmapeq0  41861  lincval1  48148  lcosn0  48149  lincvalsc0  48150  lcoc0  48151  linc1  48154  lcoss  48165  el0ldep  48195
  Copyright terms: Public domain W3C validator