| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmod0cl | Structured version Visualization version GIF version | ||
| Description: The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0cl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmod0cl.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmod0cl.z | ⊢ 0 = (0g‘𝐹) |
| Ref | Expression |
|---|---|
| lmod0cl | ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmod0cl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 20774 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | lmod0cl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | lmod0cl.z | . . 3 ⊢ 0 = (0g‘𝐹) | |
| 5 | 3, 4 | ring0cl 20176 | . 2 ⊢ (𝐹 ∈ Ring → 0 ∈ 𝐾) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 Scalarcsca 17223 0gc0g 17402 Ringcrg 20142 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-ring 20144 df-lmod 20768 |
| This theorem is referenced by: lmodfopnelem2 20805 lmodfopne 20806 lss1d 20869 lspsolvlem 21052 iporthcom 21544 lfl0f 39062 lfl1dim 39114 lfl1dim2N 39115 lkrss2N 39162 baerlem5blem1 41703 hdmap14lem2a 41861 hdmap14lem4a 41865 hdmap14lem6 41867 hgmapval0 41886 hgmapeq0 41898 lincval1 48408 lcosn0 48409 lincvalsc0 48410 lcoc0 48411 linc1 48414 lcoss 48425 el0ldep 48455 |
| Copyright terms: Public domain | W3C validator |