| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmod0cl | Structured version Visualization version GIF version | ||
| Description: The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0cl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmod0cl.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmod0cl.z | ⊢ 0 = (0g‘𝐹) |
| Ref | Expression |
|---|---|
| lmod0cl | ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmod0cl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 20803 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | lmod0cl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | lmod0cl.z | . . 3 ⊢ 0 = (0g‘𝐹) | |
| 5 | 3, 4 | ring0cl 20187 | . 2 ⊢ (𝐹 ∈ Ring → 0 ∈ 𝐾) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 Basecbs 17122 Scalarcsca 17166 0gc0g 17345 Ringcrg 20153 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7309 df-ov 7355 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-ring 20155 df-lmod 20797 |
| This theorem is referenced by: lmodfopnelem2 20834 lmodfopne 20835 lss1d 20898 lspsolvlem 21081 iporthcom 21574 lfl0f 39189 lfl1dim 39241 lfl1dim2N 39242 lkrss2N 39289 baerlem5blem1 41829 hdmap14lem2a 41987 hdmap14lem4a 41991 hdmap14lem6 41993 hgmapval0 42012 hgmapeq0 42024 lincval1 48545 lcosn0 48546 lincvalsc0 48547 lcoc0 48548 linc1 48551 lcoss 48562 el0ldep 48592 |
| Copyright terms: Public domain | W3C validator |