![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmod0cl | Structured version Visualization version GIF version |
Description: The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmod0cl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmod0cl.k | ⊢ 𝐾 = (Base‘𝐹) |
lmod0cl.z | ⊢ 0 = (0g‘𝐹) |
Ref | Expression |
---|---|
lmod0cl | ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmod0cl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodring 20888 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
3 | lmod0cl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
4 | lmod0cl.z | . . 3 ⊢ 0 = (0g‘𝐹) | |
5 | 3, 4 | ring0cl 20290 | . 2 ⊢ (𝐹 ∈ Ring → 0 ∈ 𝐾) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Basecbs 17258 Scalarcsca 17314 0gc0g 17499 Ringcrg 20260 LModclmod 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-ring 20262 df-lmod 20882 |
This theorem is referenced by: lmodfopnelem2 20919 lmodfopne 20920 lss1d 20984 lspsolvlem 21167 iporthcom 21676 lfl0f 39025 lfl1dim 39077 lfl1dim2N 39078 lkrss2N 39125 baerlem5blem1 41666 hdmap14lem2a 41824 hdmap14lem4a 41828 hdmap14lem6 41830 hgmapval0 41849 hgmapeq0 41861 lincval1 48148 lcosn0 48149 lincvalsc0 48150 lcoc0 48151 linc1 48154 lcoss 48165 el0ldep 48195 |
Copyright terms: Public domain | W3C validator |