| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmod0cl | Structured version Visualization version GIF version | ||
| Description: The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0cl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmod0cl.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmod0cl.z | ⊢ 0 = (0g‘𝐹) |
| Ref | Expression |
|---|---|
| lmod0cl | ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmod0cl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 20781 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | lmod0cl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | lmod0cl.z | . . 3 ⊢ 0 = (0g‘𝐹) | |
| 5 | 3, 4 | ring0cl 20183 | . 2 ⊢ (𝐹 ∈ Ring → 0 ∈ 𝐾) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 Basecbs 17186 Scalarcsca 17230 0gc0g 17409 Ringcrg 20149 LModclmod 20773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-ring 20151 df-lmod 20775 |
| This theorem is referenced by: lmodfopnelem2 20812 lmodfopne 20813 lss1d 20876 lspsolvlem 21059 iporthcom 21551 lfl0f 39069 lfl1dim 39121 lfl1dim2N 39122 lkrss2N 39169 baerlem5blem1 41710 hdmap14lem2a 41868 hdmap14lem4a 41872 hdmap14lem6 41874 hgmapval0 41893 hgmapeq0 41905 lincval1 48412 lcosn0 48413 lincvalsc0 48414 lcoc0 48415 linc1 48418 lcoss 48429 el0ldep 48459 |
| Copyright terms: Public domain | W3C validator |