Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincval1 Structured version   Visualization version   GIF version

Theorem lincval1 48375
Description: The linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.)
Hypotheses
Ref Expression
lincval1.b 𝐵 = (Base‘𝑀)
lincval1.s 𝑆 = (Scalar‘𝑀)
lincval1.r 𝑅 = (Base‘𝑆)
lincval1.f 𝐹 = {⟨𝑉, (0g𝑆)⟩}
Assertion
Ref Expression
lincval1 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹( linC ‘𝑀){𝑉}) = (0g𝑀))

Proof of Theorem lincval1
StepHypRef Expression
1 lincval1.s . . . . 5 𝑆 = (Scalar‘𝑀)
2 lincval1.r . . . . 5 𝑅 = (Base‘𝑆)
3 eqid 2736 . . . . 5 (0g𝑆) = (0g𝑆)
41, 2, 3lmod0cl 20850 . . . 4 (𝑀 ∈ LMod → (0g𝑆) ∈ 𝑅)
54adantr 480 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (0g𝑆) ∈ 𝑅)
6 lincval1.b . . . 4 𝐵 = (Base‘𝑀)
7 eqid 2736 . . . 4 ( ·𝑠𝑀) = ( ·𝑠𝑀)
8 lincval1.f . . . 4 𝐹 = {⟨𝑉, (0g𝑆)⟩}
96, 1, 2, 7, 8lincvalsn 48373 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵 ∧ (0g𝑆) ∈ 𝑅) → (𝐹( linC ‘𝑀){𝑉}) = ((0g𝑆)( ·𝑠𝑀)𝑉))
105, 9mpd3an3 1464 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹( linC ‘𝑀){𝑉}) = ((0g𝑆)( ·𝑠𝑀)𝑉))
11 eqid 2736 . . 3 (0g𝑀) = (0g𝑀)
126, 1, 7, 3, 11lmod0vs 20857 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → ((0g𝑆)( ·𝑠𝑀)𝑉) = (0g𝑀))
1310, 12eqtrd 2771 1 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → (𝐹( linC ‘𝑀){𝑉}) = (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4606  cop 4612  cfv 6536  (class class class)co 7410  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458  LModclmod 20822   linC clinc 48360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-mulg 19056  df-cntz 19305  df-ring 20200  df-lmod 20824  df-linc 48362
This theorem is referenced by:  lcosn0  48376
  Copyright terms: Public domain W3C validator