Step | Hyp | Ref
| Expression |
1 | | lcfrlem30.c |
. . . . . . 7
β’ πΆ = ((π½βπ) β (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ))) |
2 | | lcfrlem31.cn |
. . . . . . 7
β’ (π β πΆ = (0gβπ·)) |
3 | 1, 2 | eqtr3id 2787 |
. . . . . 6
β’ (π β ((π½βπ) β (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ))) = (0gβπ·)) |
4 | | lcfrlem25.d |
. . . . . . . 8
β’ π· = (LDualβπ) |
5 | | lcfrlem17.h |
. . . . . . . . 9
β’ π» = (LHypβπΎ) |
6 | | lcfrlem17.u |
. . . . . . . . 9
β’ π = ((DVecHβπΎ)βπ) |
7 | | lcfrlem17.k |
. . . . . . . . 9
β’ (π β (πΎ β HL β§ π β π»)) |
8 | 5, 6, 7 | dvhlmod 39623 |
. . . . . . . 8
β’ (π β π β LMod) |
9 | 4, 8 | lduallmod 37665 |
. . . . . . 7
β’ (π β π· β LMod) |
10 | | eqid 2733 |
. . . . . . . 8
β’
(LFnlβπ) =
(LFnlβπ) |
11 | | eqid 2733 |
. . . . . . . 8
β’
(Baseβπ·) =
(Baseβπ·) |
12 | | lcfrlem17.o |
. . . . . . . . 9
β’ β₯ =
((ocHβπΎ)βπ) |
13 | | lcfrlem17.v |
. . . . . . . . 9
β’ π = (Baseβπ) |
14 | | lcfrlem17.p |
. . . . . . . . 9
β’ + =
(+gβπ) |
15 | | lcfrlem24.t |
. . . . . . . . 9
β’ Β· = (
Β·π βπ) |
16 | | lcfrlem24.s |
. . . . . . . . 9
β’ π = (Scalarβπ) |
17 | | lcfrlem24.r |
. . . . . . . . 9
β’ π
= (Baseβπ) |
18 | | lcfrlem17.z |
. . . . . . . . 9
β’ 0 =
(0gβπ) |
19 | | lcfrlem24.l |
. . . . . . . . 9
β’ πΏ = (LKerβπ) |
20 | | eqid 2733 |
. . . . . . . . 9
β’
(0gβπ·) = (0gβπ·) |
21 | | eqid 2733 |
. . . . . . . . 9
β’ {π β (LFnlβπ) β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} = {π β (LFnlβπ) β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} |
22 | | lcfrlem24.j |
. . . . . . . . 9
β’ π½ = (π₯ β (π β { 0 }) β¦ (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) |
23 | | lcfrlem17.x |
. . . . . . . . 9
β’ (π β π β (π β { 0 })) |
24 | 5, 12, 6, 13, 14, 15, 16, 17, 18, 10, 19, 4, 20, 21, 22, 7, 23 | lcfrlem10 40065 |
. . . . . . . 8
β’ (π β (π½βπ) β (LFnlβπ)) |
25 | 10, 4, 11, 8, 24 | ldualelvbase 37639 |
. . . . . . 7
β’ (π β (π½βπ) β (Baseβπ·)) |
26 | | eqid 2733 |
. . . . . . . . 9
β’ (
Β·π βπ·) = ( Β·π
βπ·) |
27 | | lcfrlem17.n |
. . . . . . . . . 10
β’ π = (LSpanβπ) |
28 | | lcfrlem17.a |
. . . . . . . . . 10
β’ π΄ = (LSAtomsβπ) |
29 | | lcfrlem17.y |
. . . . . . . . . 10
β’ (π β π β (π β { 0 })) |
30 | | lcfrlem17.ne |
. . . . . . . . . 10
β’ (π β (πβ{π}) β (πβ{π})) |
31 | | lcfrlem22.b |
. . . . . . . . . 10
β’ π΅ = ((πβ{π, π}) β© ( β₯ β{(π + π)})) |
32 | | lcfrlem24.q |
. . . . . . . . . 10
β’ π = (0gβπ) |
33 | | lcfrlem24.ib |
. . . . . . . . . 10
β’ (π β πΌ β π΅) |
34 | | lcfrlem28.jn |
. . . . . . . . . 10
β’ (π β ((π½βπ)βπΌ) β π) |
35 | | lcfrlem29.i |
. . . . . . . . . 10
β’ πΉ = (invrβπ) |
36 | 5, 12, 6, 13, 14, 18, 27, 28, 7, 23, 29, 30, 31, 15, 16, 32, 17, 22, 33, 19, 4, 34, 35 | lcfrlem29 40084 |
. . . . . . . . 9
β’ (π β ((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ)) β π
) |
37 | 5, 12, 6, 13, 14, 15, 16, 17, 18, 10, 19, 4, 20, 21, 22, 7, 29 | lcfrlem10 40065 |
. . . . . . . . 9
β’ (π β (π½βπ) β (LFnlβπ)) |
38 | 10, 16, 17, 4, 26, 8, 36, 37 | ldualvscl 37651 |
. . . . . . . 8
β’ (π β (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ)) β (LFnlβπ)) |
39 | 10, 4, 11, 8, 38 | ldualelvbase 37639 |
. . . . . . 7
β’ (π β (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ)) β (Baseβπ·)) |
40 | | lcfrlem30.m |
. . . . . . . 8
β’ β =
(-gβπ·) |
41 | 11, 20, 40 | lmodsubeq0 20425 |
. . . . . . 7
β’ ((π· β LMod β§ (π½βπ) β (Baseβπ·) β§ (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ)) β (Baseβπ·)) β (((π½βπ) β (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ))) = (0gβπ·) β (π½βπ) = (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ)))) |
42 | 9, 25, 39, 41 | syl3anc 1372 |
. . . . . 6
β’ (π β (((π½βπ) β (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ))) = (0gβπ·) β (π½βπ) = (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ)))) |
43 | 3, 42 | mpbid 231 |
. . . . 5
β’ (π β (π½βπ) = (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ))) |
44 | 43 | fveq2d 6850 |
. . . 4
β’ (π β (πΏβ(π½βπ)) = (πΏβ(((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ)))) |
45 | 5, 6, 7 | dvhlvec 39622 |
. . . . 5
β’ (π β π β LVec) |
46 | 16 | lvecdrng 20610 |
. . . . . . . 8
β’ (π β LVec β π β
DivRing) |
47 | 45, 46 | syl 17 |
. . . . . . 7
β’ (π β π β DivRing) |
48 | 5, 12, 6, 13, 14, 18, 27, 28, 7, 23, 29, 30, 31 | lcfrlem22 40077 |
. . . . . . . . . 10
β’ (π β π΅ β π΄) |
49 | 13, 28, 8, 48 | lsatssv 37510 |
. . . . . . . . 9
β’ (π β π΅ β π) |
50 | 49, 33 | sseldd 3949 |
. . . . . . . 8
β’ (π β πΌ β π) |
51 | 16, 17, 13, 10 | lflcl 37576 |
. . . . . . . 8
β’ ((π β LMod β§ (π½βπ) β (LFnlβπ) β§ πΌ β π) β ((π½βπ)βπΌ) β π
) |
52 | 8, 37, 50, 51 | syl3anc 1372 |
. . . . . . 7
β’ (π β ((π½βπ)βπΌ) β π
) |
53 | 17, 32, 35 | drnginvrn0 20241 |
. . . . . . 7
β’ ((π β DivRing β§ ((π½βπ)βπΌ) β π
β§ ((π½βπ)βπΌ) β π) β (πΉβ((π½βπ)βπΌ)) β π) |
54 | 47, 52, 34, 53 | syl3anc 1372 |
. . . . . 6
β’ (π β (πΉβ((π½βπ)βπΌ)) β π) |
55 | | lcfrlem31.xi |
. . . . . 6
β’ (π β ((π½βπ)βπΌ) β π) |
56 | | eqid 2733 |
. . . . . . 7
β’
(.rβπ) = (.rβπ) |
57 | 17, 32, 35 | drnginvrcl 20240 |
. . . . . . . 8
β’ ((π β DivRing β§ ((π½βπ)βπΌ) β π
β§ ((π½βπ)βπΌ) β π) β (πΉβ((π½βπ)βπΌ)) β π
) |
58 | 47, 52, 34, 57 | syl3anc 1372 |
. . . . . . 7
β’ (π β (πΉβ((π½βπ)βπΌ)) β π
) |
59 | 16, 17, 13, 10 | lflcl 37576 |
. . . . . . . 8
β’ ((π β LMod β§ (π½βπ) β (LFnlβπ) β§ πΌ β π) β ((π½βπ)βπΌ) β π
) |
60 | 8, 24, 50, 59 | syl3anc 1372 |
. . . . . . 7
β’ (π β ((π½βπ)βπΌ) β π
) |
61 | 17, 32, 56, 47, 58, 60 | drngmulne0 20246 |
. . . . . 6
β’ (π β (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ)) β π β ((πΉβ((π½βπ)βπΌ)) β π β§ ((π½βπ)βπΌ) β π))) |
62 | 54, 55, 61 | mpbir2and 712 |
. . . . 5
β’ (π β ((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ)) β π) |
63 | 16, 17, 32, 10, 19, 4, 26, 45, 37, 36, 62 | ldualkrsc 37679 |
. . . 4
β’ (π β (πΏβ(((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π
βπ·)(π½βπ))) = (πΏβ(π½βπ))) |
64 | 44, 63 | eqtrd 2773 |
. . 3
β’ (π β (πΏβ(π½βπ)) = (πΏβ(π½βπ))) |
65 | 64 | fveq2d 6850 |
. 2
β’ (π β ( β₯ β(πΏβ(π½βπ))) = ( β₯ β(πΏβ(π½βπ)))) |
66 | 5, 12, 6, 13, 14, 15, 16, 17, 18, 10, 19, 4, 20, 21, 22, 7, 23, 27 | lcfrlem14 40069 |
. 2
β’ (π β ( β₯ β(πΏβ(π½βπ))) = (πβ{π})) |
67 | 5, 12, 6, 13, 14, 15, 16, 17, 18, 10, 19, 4, 20, 21, 22, 7, 29, 27 | lcfrlem14 40069 |
. 2
β’ (π β ( β₯ β(πΏβ(π½βπ))) = (πβ{π})) |
68 | 65, 66, 67 | 3eqtr3d 2781 |
1
β’ (π β (πβ{π}) = (πβ{π})) |