Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem31 Structured version   Visualization version   GIF version

Theorem lcfrlem31 39596
Description: Lemma for lcfr 39608. (Contributed by NM, 10-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
lcfrlem31.xi (𝜑 → ((𝐽𝑋)‘𝐼) ≠ 𝑄)
lcfrlem31.cn (𝜑𝐶 = (0g𝐷))
Assertion
Ref Expression
lcfrlem31 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑘)   𝐴(𝑥,𝑤,𝑣,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣)   𝑈(𝑥,𝑤,𝑣,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   (𝑥,𝑤,𝑣,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑘)   0 (𝑤,𝑣,𝑘)

Proof of Theorem lcfrlem31
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lcfrlem30.c . . . . . . 7 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
2 lcfrlem31.cn . . . . . . 7 (𝜑𝐶 = (0g𝐷))
31, 2eqtr3id 2794 . . . . . 6 (𝜑 → ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) = (0g𝐷))
4 lcfrlem25.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
5 lcfrlem17.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
6 lcfrlem17.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 lcfrlem17.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
85, 6, 7dvhlmod 39133 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
94, 8lduallmod 37176 . . . . . . 7 (𝜑𝐷 ∈ LMod)
10 eqid 2740 . . . . . . . 8 (LFnl‘𝑈) = (LFnl‘𝑈)
11 eqid 2740 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
12 lcfrlem17.o . . . . . . . . 9 = ((ocH‘𝐾)‘𝑊)
13 lcfrlem17.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
14 lcfrlem17.p . . . . . . . . 9 + = (+g𝑈)
15 lcfrlem24.t . . . . . . . . 9 · = ( ·𝑠𝑈)
16 lcfrlem24.s . . . . . . . . 9 𝑆 = (Scalar‘𝑈)
17 lcfrlem24.r . . . . . . . . 9 𝑅 = (Base‘𝑆)
18 lcfrlem17.z . . . . . . . . 9 0 = (0g𝑈)
19 lcfrlem24.l . . . . . . . . 9 𝐿 = (LKer‘𝑈)
20 eqid 2740 . . . . . . . . 9 (0g𝐷) = (0g𝐷)
21 eqid 2740 . . . . . . . . 9 {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
22 lcfrlem24.j . . . . . . . . 9 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
23 lcfrlem17.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
245, 12, 6, 13, 14, 15, 16, 17, 18, 10, 19, 4, 20, 21, 22, 7, 23lcfrlem10 39575 . . . . . . . 8 (𝜑 → (𝐽𝑋) ∈ (LFnl‘𝑈))
2510, 4, 11, 8, 24ldualelvbase 37150 . . . . . . 7 (𝜑 → (𝐽𝑋) ∈ (Base‘𝐷))
26 eqid 2740 . . . . . . . . 9 ( ·𝑠𝐷) = ( ·𝑠𝐷)
27 lcfrlem17.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑈)
28 lcfrlem17.a . . . . . . . . . 10 𝐴 = (LSAtoms‘𝑈)
29 lcfrlem17.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
30 lcfrlem17.ne . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
31 lcfrlem22.b . . . . . . . . . 10 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
32 lcfrlem24.q . . . . . . . . . 10 𝑄 = (0g𝑆)
33 lcfrlem24.ib . . . . . . . . . 10 (𝜑𝐼𝐵)
34 lcfrlem28.jn . . . . . . . . . 10 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
35 lcfrlem29.i . . . . . . . . . 10 𝐹 = (invr𝑆)
365, 12, 6, 13, 14, 18, 27, 28, 7, 23, 29, 30, 31, 15, 16, 32, 17, 22, 33, 19, 4, 34, 35lcfrlem29 39594 . . . . . . . . 9 (𝜑 → ((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼)) ∈ 𝑅)
375, 12, 6, 13, 14, 15, 16, 17, 18, 10, 19, 4, 20, 21, 22, 7, 29lcfrlem10 39575 . . . . . . . . 9 (𝜑 → (𝐽𝑌) ∈ (LFnl‘𝑈))
3810, 16, 17, 4, 26, 8, 36, 37ldualvscl 37162 . . . . . . . 8 (𝜑 → (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)) ∈ (LFnl‘𝑈))
3910, 4, 11, 8, 38ldualelvbase 37150 . . . . . . 7 (𝜑 → (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)) ∈ (Base‘𝐷))
40 lcfrlem30.m . . . . . . . 8 = (-g𝐷)
4111, 20, 40lmodsubeq0 20193 . . . . . . 7 ((𝐷 ∈ LMod ∧ (𝐽𝑋) ∈ (Base‘𝐷) ∧ (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)) ∈ (Base‘𝐷)) → (((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) = (0g𝐷) ↔ (𝐽𝑋) = (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))))
429, 25, 39, 41syl3anc 1370 . . . . . 6 (𝜑 → (((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) = (0g𝐷) ↔ (𝐽𝑋) = (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))))
433, 42mpbid 231 . . . . 5 (𝜑 → (𝐽𝑋) = (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
4443fveq2d 6775 . . . 4 (𝜑 → (𝐿‘(𝐽𝑋)) = (𝐿‘(((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))))
455, 6, 7dvhlvec 39132 . . . . 5 (𝜑𝑈 ∈ LVec)
4616lvecdrng 20378 . . . . . . . 8 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
4745, 46syl 17 . . . . . . 7 (𝜑𝑆 ∈ DivRing)
485, 12, 6, 13, 14, 18, 27, 28, 7, 23, 29, 30, 31lcfrlem22 39587 . . . . . . . . . 10 (𝜑𝐵𝐴)
4913, 28, 8, 48lsatssv 37021 . . . . . . . . 9 (𝜑𝐵𝑉)
5049, 33sseldd 3927 . . . . . . . 8 (𝜑𝐼𝑉)
5116, 17, 13, 10lflcl 37087 . . . . . . . 8 ((𝑈 ∈ LMod ∧ (𝐽𝑌) ∈ (LFnl‘𝑈) ∧ 𝐼𝑉) → ((𝐽𝑌)‘𝐼) ∈ 𝑅)
528, 37, 50, 51syl3anc 1370 . . . . . . 7 (𝜑 → ((𝐽𝑌)‘𝐼) ∈ 𝑅)
5317, 32, 35drnginvrn0 20020 . . . . . . 7 ((𝑆 ∈ DivRing ∧ ((𝐽𝑌)‘𝐼) ∈ 𝑅 ∧ ((𝐽𝑌)‘𝐼) ≠ 𝑄) → (𝐹‘((𝐽𝑌)‘𝐼)) ≠ 𝑄)
5447, 52, 34, 53syl3anc 1370 . . . . . 6 (𝜑 → (𝐹‘((𝐽𝑌)‘𝐼)) ≠ 𝑄)
55 lcfrlem31.xi . . . . . 6 (𝜑 → ((𝐽𝑋)‘𝐼) ≠ 𝑄)
56 eqid 2740 . . . . . . 7 (.r𝑆) = (.r𝑆)
5717, 32, 35drnginvrcl 20019 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ ((𝐽𝑌)‘𝐼) ∈ 𝑅 ∧ ((𝐽𝑌)‘𝐼) ≠ 𝑄) → (𝐹‘((𝐽𝑌)‘𝐼)) ∈ 𝑅)
5847, 52, 34, 57syl3anc 1370 . . . . . . 7 (𝜑 → (𝐹‘((𝐽𝑌)‘𝐼)) ∈ 𝑅)
5916, 17, 13, 10lflcl 37087 . . . . . . . 8 ((𝑈 ∈ LMod ∧ (𝐽𝑋) ∈ (LFnl‘𝑈) ∧ 𝐼𝑉) → ((𝐽𝑋)‘𝐼) ∈ 𝑅)
608, 24, 50, 59syl3anc 1370 . . . . . . 7 (𝜑 → ((𝐽𝑋)‘𝐼) ∈ 𝑅)
6117, 32, 56, 47, 58, 60drngmulne0 20024 . . . . . 6 (𝜑 → (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼)) ≠ 𝑄 ↔ ((𝐹‘((𝐽𝑌)‘𝐼)) ≠ 𝑄 ∧ ((𝐽𝑋)‘𝐼) ≠ 𝑄)))
6254, 55, 61mpbir2and 710 . . . . 5 (𝜑 → ((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼)) ≠ 𝑄)
6316, 17, 32, 10, 19, 4, 26, 45, 37, 36, 62ldualkrsc 37190 . . . 4 (𝜑 → (𝐿‘(((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) = (𝐿‘(𝐽𝑌)))
6444, 63eqtrd 2780 . . 3 (𝜑 → (𝐿‘(𝐽𝑋)) = (𝐿‘(𝐽𝑌)))
6564fveq2d 6775 . 2 (𝜑 → ( ‘(𝐿‘(𝐽𝑋))) = ( ‘(𝐿‘(𝐽𝑌))))
665, 12, 6, 13, 14, 15, 16, 17, 18, 10, 19, 4, 20, 21, 22, 7, 23, 27lcfrlem14 39579 . 2 (𝜑 → ( ‘(𝐿‘(𝐽𝑋))) = (𝑁‘{𝑋}))
675, 12, 6, 13, 14, 15, 16, 17, 18, 10, 19, 4, 20, 21, 22, 7, 29, 27lcfrlem14 39579 . 2 (𝜑 → ( ‘(𝐿‘(𝐽𝑌))) = (𝑁‘{𝑌}))
6865, 66, 673eqtr3d 2788 1 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  wrex 3067  {crab 3070  cdif 3889  cin 3891  {csn 4567  {cpr 4569  cmpt 5162  cfv 6432  crio 7228  (class class class)co 7272  Basecbs 16923  +gcplusg 16973  .rcmulr 16974  Scalarcsca 16976   ·𝑠 cvsca 16977  0gc0g 17161  -gcsg 18590  invrcinvr 19924  DivRingcdr 20002  LModclmod 20134  LSpanclspn 20244  LVecclvec 20375  LSAtomsclsa 36997  LFnlclfn 37080  LKerclk 37108  LDualcld 37146  HLchlt 37373  LHypclh 38007  DVecHcdvh 39101  ocHcoch 39370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-riotaBAD 36976
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-om 7708  df-1st 7825  df-2nd 7826  df-tpos 8034  df-undef 8081  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-n0 12245  df-z 12331  df-uz 12594  df-fz 13251  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-sca 16989  df-vsca 16990  df-0g 17163  df-mre 17306  df-mrc 17307  df-acs 17309  df-proset 18024  df-poset 18042  df-plt 18059  df-lub 18075  df-glb 18076  df-join 18077  df-meet 18078  df-p0 18154  df-p1 18155  df-lat 18161  df-clat 18228  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-submnd 18442  df-grp 18591  df-minusg 18592  df-sbg 18593  df-subg 18763  df-cntz 18934  df-oppg 18961  df-lsm 19252  df-cmn 19399  df-abl 19400  df-mgp 19732  df-ur 19749  df-ring 19796  df-oppr 19873  df-dvdsr 19894  df-unit 19895  df-invr 19925  df-dvr 19936  df-drng 20004  df-lmod 20136  df-lss 20205  df-lsp 20245  df-lvec 20376  df-lsatoms 36999  df-lshyp 37000  df-lcv 37042  df-lfl 37081  df-lkr 37109  df-ldual 37147  df-oposet 37199  df-ol 37201  df-oml 37202  df-covers 37289  df-ats 37290  df-atl 37321  df-cvlat 37345  df-hlat 37374  df-llines 37521  df-lplanes 37522  df-lvols 37523  df-lines 37524  df-psubsp 37526  df-pmap 37527  df-padd 37819  df-lhyp 38011  df-laut 38012  df-ldil 38127  df-ltrn 38128  df-trl 38182  df-tgrp 38766  df-tendo 38778  df-edring 38780  df-dveca 39026  df-disoa 39052  df-dvech 39102  df-dib 39162  df-dic 39196  df-dih 39252  df-doch 39371  df-djh 39418
This theorem is referenced by:  lcfrlem32  39597
  Copyright terms: Public domain W3C validator