Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem9N Structured version   Visualization version   GIF version

Theorem hdmaprnlem9N 38995
Description: Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 38777 and mapdcnv11N 38797. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem9N (𝜑𝑠 = (𝑆𝑡))

Proof of Theorem hdmaprnlem9N
StepHypRef Expression
1 hdmaprnlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmaprnlem1.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmaprnlem1.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmaprnlem1.n . . . . . 6 𝑁 = (LSpan‘𝑈)
5 hdmaprnlem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 hdmaprnlem1.l . . . . . 6 𝐿 = (LSpan‘𝐶)
7 hdmaprnlem1.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
8 hdmaprnlem1.s . . . . . 6 𝑆 = ((HDMap‘𝐾)‘𝑊)
9 hdmaprnlem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 hdmaprnlem1.se . . . . . 6 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
11 hdmaprnlem1.ve . . . . . 6 (𝜑𝑣𝑉)
12 hdmaprnlem1.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
13 hdmaprnlem1.ue . . . . . 6 (𝜑𝑢𝑉)
14 hdmaprnlem1.un . . . . . 6 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
15 hdmaprnlem1.d . . . . . 6 𝐷 = (Base‘𝐶)
16 hdmaprnlem1.q . . . . . 6 𝑄 = (0g𝐶)
17 hdmaprnlem1.o . . . . . 6 0 = (0g𝑈)
18 hdmaprnlem1.a . . . . . 6 = (+g𝐶)
19 hdmaprnlem1.t2 . . . . . 6 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
20 hdmaprnlem1.p . . . . . 6 + = (+g𝑈)
21 hdmaprnlem1.pt . . . . . 6 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21hdmaprnlem7N 38993 . . . . 5 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21hdmaprnlem8N 38994 . . . . . 6 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19hdmaprnlem4N 38991 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠}))
2523, 24eleqtrd 2917 . . . . 5 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{𝑠}))
2622, 25elind 4173 . . . 4 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ ((𝐿‘{((𝑆𝑢) 𝑠)}) ∩ (𝐿‘{𝑠})))
271, 5, 9lcdlvec 38729 . . . . 5 (𝜑𝐶 ∈ LVec)
281, 5, 9lcdlmod 38730 . . . . . 6 (𝜑𝐶 ∈ LMod)
291, 2, 3, 5, 15, 8, 9, 13hdmapcl 38968 . . . . . 6 (𝜑 → (𝑆𝑢) ∈ 𝐷)
3010eldifad 3950 . . . . . 6 (𝜑𝑠𝐷)
3115, 18lmodvacl 19650 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
3228, 29, 30, 31syl3anc 1367 . . . . 5 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
33 eqid 2823 . . . . . . . . . . . . . 14 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3415, 33, 6lspsncl 19751 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
3528, 30, 34syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
361, 7, 5, 33, 9mapdrn2 38789 . . . . . . . . . . . 12 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
3735, 36eleqtrrd 2918 . . . . . . . . . . 11 (𝜑 → (𝐿‘{𝑠}) ∈ ran 𝑀)
381, 7, 9, 37mapdcnvid2 38795 . . . . . . . . . 10 (𝜑 → (𝑀‘(𝑀‘(𝐿‘{𝑠}))) = (𝐿‘{𝑠}))
3912, 38eqtr4d 2861 . . . . . . . . 9 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{𝑠}))))
40 eqid 2823 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
411, 2, 9dvhlmod 38248 . . . . . . . . . . 11 (𝜑𝑈 ∈ LMod)
423, 40, 4lspsncl 19751 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
4341, 11, 42syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
441, 7, 2, 40, 9, 37mapdcnvcl 38790 . . . . . . . . . 10 (𝜑 → (𝑀‘(𝐿‘{𝑠})) ∈ (LSubSp‘𝑈))
451, 2, 40, 7, 9, 43, 44mapd11 38777 . . . . . . . . 9 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{𝑠}))) ↔ (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{𝑠}))))
4639, 45mpbid 234 . . . . . . . 8 (𝜑 → (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{𝑠})))
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18hdmaprnlem3N 38988 . . . . . . . 8 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
4846, 47eqnetrrd 3086 . . . . . . 7 (𝜑 → (𝑀‘(𝐿‘{𝑠})) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
4915, 33, 6lspsncl 19751 . . . . . . . . . . 11 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
5028, 32, 49syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
5150, 36eleqtrrd 2918 . . . . . . . . 9 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
521, 7, 9, 37, 51mapdcnv11N 38797 . . . . . . . 8 (𝜑 → ((𝑀‘(𝐿‘{𝑠})) = (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ↔ (𝐿‘{𝑠}) = (𝐿‘{((𝑆𝑢) 𝑠)})))
5352necon3bid 3062 . . . . . . 7 (𝜑 → ((𝑀‘(𝐿‘{𝑠})) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ↔ (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)})))
5448, 53mpbid 234 . . . . . 6 (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)}))
5554necomd 3073 . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ≠ (𝐿‘{𝑠}))
5615, 16, 6, 27, 32, 30, 55lspdisj2 19901 . . . 4 (𝜑 → ((𝐿‘{((𝑆𝑢) 𝑠)}) ∩ (𝐿‘{𝑠})) = {𝑄})
5726, 56eleqtrd 2917 . . 3 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ {𝑄})
58 elsni 4586 . . 3 ((𝑠(-g𝐶)(𝑆𝑡)) ∈ {𝑄} → (𝑠(-g𝐶)(𝑆𝑡)) = 𝑄)
5957, 58syl 17 . 2 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) = 𝑄)
601, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19hdmaprnlem4tN 38990 . . . 4 (𝜑𝑡𝑉)
611, 2, 3, 5, 15, 8, 9, 60hdmapcl 38968 . . 3 (𝜑 → (𝑆𝑡) ∈ 𝐷)
62 eqid 2823 . . . 4 (-g𝐶) = (-g𝐶)
6315, 16, 62lmodsubeq0 19695 . . 3 ((𝐶 ∈ LMod ∧ 𝑠𝐷 ∧ (𝑆𝑡) ∈ 𝐷) → ((𝑠(-g𝐶)(𝑆𝑡)) = 𝑄𝑠 = (𝑆𝑡)))
6428, 30, 61, 63syl3anc 1367 . 2 (𝜑 → ((𝑠(-g𝐶)(𝑆𝑡)) = 𝑄𝑠 = (𝑆𝑡)))
6559, 64mpbid 234 1 (𝜑𝑠 = (𝑆𝑡))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  cdif 3935  cin 3937  {csn 4569  ccnv 5556  ran crn 5558  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  0gc0g 16715  -gcsg 18107  LModclmod 19636  LSubSpclss 19705  LSpanclspn 19745  HLchlt 36488  LHypclh 37122  DVecHcdvh 38216  LCDualclcd 38724  mapdcmpd 38762  HDMapchdma 38930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-undef 7941  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-mre 16859  df-mrc 16860  df-acs 16862  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-oppg 18476  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lsatoms 36114  df-lshyp 36115  df-lcv 36157  df-lfl 36196  df-lkr 36224  df-ldual 36262  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tgrp 37881  df-tendo 37893  df-edring 37895  df-dveca 38141  df-disoa 38167  df-dvech 38217  df-dib 38277  df-dic 38311  df-dih 38367  df-doch 38486  df-djh 38533  df-lcdual 38725  df-mapd 38763  df-hvmap 38895  df-hdmap1 38931  df-hdmap 38932
This theorem is referenced by:  hdmaprnlem10N  38997
  Copyright terms: Public domain W3C validator