Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem9N | Structured version Visualization version GIF version |
Description: Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 39580 and mapdcnv11N 39600. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmaprnlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmaprnlem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmaprnlem1.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmaprnlem1.se | ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) |
hdmaprnlem1.ve | ⊢ (𝜑 → 𝑣 ∈ 𝑉) |
hdmaprnlem1.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) |
hdmaprnlem1.ue | ⊢ (𝜑 → 𝑢 ∈ 𝑉) |
hdmaprnlem1.un | ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) |
hdmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
hdmaprnlem1.a | ⊢ ✚ = (+g‘𝐶) |
hdmaprnlem1.t2 | ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) |
hdmaprnlem1.p | ⊢ + = (+g‘𝑈) |
hdmaprnlem1.pt | ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) |
Ref | Expression |
---|---|
hdmaprnlem9N | ⊢ (𝜑 → 𝑠 = (𝑆‘𝑡)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaprnlem1.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmaprnlem1.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmaprnlem1.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmaprnlem1.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
5 | hdmaprnlem1.c | . . . . . 6 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
6 | hdmaprnlem1.l | . . . . . 6 ⊢ 𝐿 = (LSpan‘𝐶) | |
7 | hdmaprnlem1.m | . . . . . 6 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
8 | hdmaprnlem1.s | . . . . . 6 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
9 | hdmaprnlem1.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | hdmaprnlem1.se | . . . . . 6 ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) | |
11 | hdmaprnlem1.ve | . . . . . 6 ⊢ (𝜑 → 𝑣 ∈ 𝑉) | |
12 | hdmaprnlem1.e | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) | |
13 | hdmaprnlem1.ue | . . . . . 6 ⊢ (𝜑 → 𝑢 ∈ 𝑉) | |
14 | hdmaprnlem1.un | . . . . . 6 ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) | |
15 | hdmaprnlem1.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐶) | |
16 | hdmaprnlem1.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝐶) | |
17 | hdmaprnlem1.o | . . . . . 6 ⊢ 0 = (0g‘𝑈) | |
18 | hdmaprnlem1.a | . . . . . 6 ⊢ ✚ = (+g‘𝐶) | |
19 | hdmaprnlem1.t2 | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) | |
20 | hdmaprnlem1.p | . . . . . 6 ⊢ + = (+g‘𝑈) | |
21 | hdmaprnlem1.pt | . . . . . 6 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) | |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | hdmaprnlem7N 39796 | . . . . 5 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | hdmaprnlem8N 39797 | . . . . . 6 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝑀‘(𝑁‘{𝑡}))) |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | hdmaprnlem4N 39794 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) |
25 | 23, 24 | eleqtrd 2841 | . . . . 5 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝐿‘{𝑠})) |
26 | 22, 25 | elind 4124 | . . . 4 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ ((𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∩ (𝐿‘{𝑠}))) |
27 | 1, 5, 9 | lcdlvec 39532 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ LVec) |
28 | 1, 5, 9 | lcdlmod 39533 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ LMod) |
29 | 1, 2, 3, 5, 15, 8, 9, 13 | hdmapcl 39771 | . . . . . 6 ⊢ (𝜑 → (𝑆‘𝑢) ∈ 𝐷) |
30 | 10 | eldifad 3895 | . . . . . 6 ⊢ (𝜑 → 𝑠 ∈ 𝐷) |
31 | 15, 18 | lmodvacl 20052 | . . . . . 6 ⊢ ((𝐶 ∈ LMod ∧ (𝑆‘𝑢) ∈ 𝐷 ∧ 𝑠 ∈ 𝐷) → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
32 | 28, 29, 30, 31 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
33 | eqid 2738 | . . . . . . . . . . . . . 14 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
34 | 15, 33, 6 | lspsncl 20154 | . . . . . . . . . . . . 13 ⊢ ((𝐶 ∈ LMod ∧ 𝑠 ∈ 𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶)) |
35 | 28, 30, 34 | syl2anc 583 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶)) |
36 | 1, 7, 5, 33, 9 | mapdrn2 39592 | . . . . . . . . . . . 12 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐶)) |
37 | 35, 36 | eleqtrrd 2842 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐿‘{𝑠}) ∈ ran 𝑀) |
38 | 1, 7, 9, 37 | mapdcnvid2 39598 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑀‘(◡𝑀‘(𝐿‘{𝑠}))) = (𝐿‘{𝑠})) |
39 | 12, 38 | eqtr4d 2781 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝑀‘(◡𝑀‘(𝐿‘{𝑠})))) |
40 | eqid 2738 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
41 | 1, 2, 9 | dvhlmod 39051 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
42 | 3, 40, 4 | lspsncl 20154 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
43 | 41, 11, 42 | syl2anc 583 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
44 | 1, 7, 2, 40, 9, 37 | mapdcnvcl 39593 | . . . . . . . . . 10 ⊢ (𝜑 → (◡𝑀‘(𝐿‘{𝑠})) ∈ (LSubSp‘𝑈)) |
45 | 1, 2, 40, 7, 9, 43, 44 | mapd11 39580 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(◡𝑀‘(𝐿‘{𝑠}))) ↔ (𝑁‘{𝑣}) = (◡𝑀‘(𝐿‘{𝑠})))) |
46 | 39, 45 | mpbid 231 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑣}) = (◡𝑀‘(𝐿‘{𝑠}))) |
47 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | hdmaprnlem3N 39791 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑣}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
48 | 46, 47 | eqnetrrd 3011 | . . . . . . 7 ⊢ (𝜑 → (◡𝑀‘(𝐿‘{𝑠})) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
49 | 15, 33, 6 | lspsncl 20154 | . . . . . . . . . . 11 ⊢ ((𝐶 ∈ LMod ∧ ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
50 | 28, 32, 49 | syl2anc 583 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
51 | 50, 36 | eleqtrrd 2842 | . . . . . . . . 9 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ ran 𝑀) |
52 | 1, 7, 9, 37, 51 | mapdcnv11N 39600 | . . . . . . . 8 ⊢ (𝜑 → ((◡𝑀‘(𝐿‘{𝑠})) = (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ↔ (𝐿‘{𝑠}) = (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
53 | 52 | necon3bid 2987 | . . . . . . 7 ⊢ (𝜑 → ((◡𝑀‘(𝐿‘{𝑠})) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ↔ (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
54 | 48, 53 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) |
55 | 54 | necomd 2998 | . . . . 5 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ≠ (𝐿‘{𝑠})) |
56 | 15, 16, 6, 27, 32, 30, 55 | lspdisj2 20304 | . . . 4 ⊢ (𝜑 → ((𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∩ (𝐿‘{𝑠})) = {𝑄}) |
57 | 26, 56 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ {𝑄}) |
58 | elsni 4575 | . . 3 ⊢ ((𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ {𝑄} → (𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄) | |
59 | 57, 58 | syl 17 | . 2 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄) |
60 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | hdmaprnlem4tN 39793 | . . . 4 ⊢ (𝜑 → 𝑡 ∈ 𝑉) |
61 | 1, 2, 3, 5, 15, 8, 9, 60 | hdmapcl 39771 | . . 3 ⊢ (𝜑 → (𝑆‘𝑡) ∈ 𝐷) |
62 | eqid 2738 | . . . 4 ⊢ (-g‘𝐶) = (-g‘𝐶) | |
63 | 15, 16, 62 | lmodsubeq0 20097 | . . 3 ⊢ ((𝐶 ∈ LMod ∧ 𝑠 ∈ 𝐷 ∧ (𝑆‘𝑡) ∈ 𝐷) → ((𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄 ↔ 𝑠 = (𝑆‘𝑡))) |
64 | 28, 30, 61, 63 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄 ↔ 𝑠 = (𝑆‘𝑡))) |
65 | 59, 64 | mpbid 231 | 1 ⊢ (𝜑 → 𝑠 = (𝑆‘𝑡)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ∩ cin 3882 {csn 4558 ◡ccnv 5579 ran crn 5581 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 -gcsg 18494 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 LCDualclcd 39527 mapdcmpd 39565 HDMapchdma 39733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lcv 36960 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 df-lcdual 39528 df-mapd 39566 df-hvmap 39698 df-hdmap1 39734 df-hdmap 39735 |
This theorem is referenced by: hdmaprnlem10N 39800 |
Copyright terms: Public domain | W3C validator |