| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem9N | Structured version Visualization version GIF version | ||
| Description: Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 41606 and mapdcnv11N 41626. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hdmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmaprnlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmaprnlem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
| hdmaprnlem1.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmaprnlem1.se | ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) |
| hdmaprnlem1.ve | ⊢ (𝜑 → 𝑣 ∈ 𝑉) |
| hdmaprnlem1.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) |
| hdmaprnlem1.ue | ⊢ (𝜑 → 𝑢 ∈ 𝑉) |
| hdmaprnlem1.un | ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) |
| hdmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
| hdmaprnlem1.a | ⊢ ✚ = (+g‘𝐶) |
| hdmaprnlem1.t2 | ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) |
| hdmaprnlem1.p | ⊢ + = (+g‘𝑈) |
| hdmaprnlem1.pt | ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) |
| Ref | Expression |
|---|---|
| hdmaprnlem9N | ⊢ (𝜑 → 𝑠 = (𝑆‘𝑡)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmaprnlem1.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmaprnlem1.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmaprnlem1.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmaprnlem1.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 5 | hdmaprnlem1.c | . . . . . 6 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 6 | hdmaprnlem1.l | . . . . . 6 ⊢ 𝐿 = (LSpan‘𝐶) | |
| 7 | hdmaprnlem1.m | . . . . . 6 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 8 | hdmaprnlem1.s | . . . . . 6 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 9 | hdmaprnlem1.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 10 | hdmaprnlem1.se | . . . . . 6 ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) | |
| 11 | hdmaprnlem1.ve | . . . . . 6 ⊢ (𝜑 → 𝑣 ∈ 𝑉) | |
| 12 | hdmaprnlem1.e | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) | |
| 13 | hdmaprnlem1.ue | . . . . . 6 ⊢ (𝜑 → 𝑢 ∈ 𝑉) | |
| 14 | hdmaprnlem1.un | . . . . . 6 ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) | |
| 15 | hdmaprnlem1.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐶) | |
| 16 | hdmaprnlem1.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝐶) | |
| 17 | hdmaprnlem1.o | . . . . . 6 ⊢ 0 = (0g‘𝑈) | |
| 18 | hdmaprnlem1.a | . . . . . 6 ⊢ ✚ = (+g‘𝐶) | |
| 19 | hdmaprnlem1.t2 | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) | |
| 20 | hdmaprnlem1.p | . . . . . 6 ⊢ + = (+g‘𝑈) | |
| 21 | hdmaprnlem1.pt | . . . . . 6 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) | |
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | hdmaprnlem7N 41822 | . . . . 5 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) |
| 23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | hdmaprnlem8N 41823 | . . . . . 6 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝑀‘(𝑁‘{𝑡}))) |
| 24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | hdmaprnlem4N 41820 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) |
| 25 | 23, 24 | eleqtrd 2830 | . . . . 5 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝐿‘{𝑠})) |
| 26 | 22, 25 | elind 4159 | . . . 4 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ ((𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∩ (𝐿‘{𝑠}))) |
| 27 | 1, 5, 9 | lcdlvec 41558 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ LVec) |
| 28 | 1, 5, 9 | lcdlmod 41559 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 29 | 1, 2, 3, 5, 15, 8, 9, 13 | hdmapcl 41797 | . . . . . 6 ⊢ (𝜑 → (𝑆‘𝑢) ∈ 𝐷) |
| 30 | 10 | eldifad 3923 | . . . . . 6 ⊢ (𝜑 → 𝑠 ∈ 𝐷) |
| 31 | 15, 18 | lmodvacl 20757 | . . . . . 6 ⊢ ((𝐶 ∈ LMod ∧ (𝑆‘𝑢) ∈ 𝐷 ∧ 𝑠 ∈ 𝐷) → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
| 32 | 28, 29, 30, 31 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
| 33 | eqid 2729 | . . . . . . . . . . . . . 14 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
| 34 | 15, 33, 6 | lspsncl 20859 | . . . . . . . . . . . . 13 ⊢ ((𝐶 ∈ LMod ∧ 𝑠 ∈ 𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶)) |
| 35 | 28, 30, 34 | syl2anc 584 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶)) |
| 36 | 1, 7, 5, 33, 9 | mapdrn2 41618 | . . . . . . . . . . . 12 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐶)) |
| 37 | 35, 36 | eleqtrrd 2831 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐿‘{𝑠}) ∈ ran 𝑀) |
| 38 | 1, 7, 9, 37 | mapdcnvid2 41624 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑀‘(◡𝑀‘(𝐿‘{𝑠}))) = (𝐿‘{𝑠})) |
| 39 | 12, 38 | eqtr4d 2767 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝑀‘(◡𝑀‘(𝐿‘{𝑠})))) |
| 40 | eqid 2729 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 41 | 1, 2, 9 | dvhlmod 41077 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 42 | 3, 40, 4 | lspsncl 20859 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
| 43 | 41, 11, 42 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
| 44 | 1, 7, 2, 40, 9, 37 | mapdcnvcl 41619 | . . . . . . . . . 10 ⊢ (𝜑 → (◡𝑀‘(𝐿‘{𝑠})) ∈ (LSubSp‘𝑈)) |
| 45 | 1, 2, 40, 7, 9, 43, 44 | mapd11 41606 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(◡𝑀‘(𝐿‘{𝑠}))) ↔ (𝑁‘{𝑣}) = (◡𝑀‘(𝐿‘{𝑠})))) |
| 46 | 39, 45 | mpbid 232 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑣}) = (◡𝑀‘(𝐿‘{𝑠}))) |
| 47 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | hdmaprnlem3N 41817 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑣}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
| 48 | 46, 47 | eqnetrrd 2993 | . . . . . . 7 ⊢ (𝜑 → (◡𝑀‘(𝐿‘{𝑠})) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
| 49 | 15, 33, 6 | lspsncl 20859 | . . . . . . . . . . 11 ⊢ ((𝐶 ∈ LMod ∧ ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
| 50 | 28, 32, 49 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
| 51 | 50, 36 | eleqtrrd 2831 | . . . . . . . . 9 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ ran 𝑀) |
| 52 | 1, 7, 9, 37, 51 | mapdcnv11N 41626 | . . . . . . . 8 ⊢ (𝜑 → ((◡𝑀‘(𝐿‘{𝑠})) = (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ↔ (𝐿‘{𝑠}) = (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
| 53 | 52 | necon3bid 2969 | . . . . . . 7 ⊢ (𝜑 → ((◡𝑀‘(𝐿‘{𝑠})) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ↔ (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
| 54 | 48, 53 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) |
| 55 | 54 | necomd 2980 | . . . . 5 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ≠ (𝐿‘{𝑠})) |
| 56 | 15, 16, 6, 27, 32, 30, 55 | lspdisj2 21013 | . . . 4 ⊢ (𝜑 → ((𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∩ (𝐿‘{𝑠})) = {𝑄}) |
| 57 | 26, 56 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ {𝑄}) |
| 58 | elsni 4602 | . . 3 ⊢ ((𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ {𝑄} → (𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄) | |
| 59 | 57, 58 | syl 17 | . 2 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄) |
| 60 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | hdmaprnlem4tN 41819 | . . . 4 ⊢ (𝜑 → 𝑡 ∈ 𝑉) |
| 61 | 1, 2, 3, 5, 15, 8, 9, 60 | hdmapcl 41797 | . . 3 ⊢ (𝜑 → (𝑆‘𝑡) ∈ 𝐷) |
| 62 | eqid 2729 | . . . 4 ⊢ (-g‘𝐶) = (-g‘𝐶) | |
| 63 | 15, 16, 62 | lmodsubeq0 20803 | . . 3 ⊢ ((𝐶 ∈ LMod ∧ 𝑠 ∈ 𝐷 ∧ (𝑆‘𝑡) ∈ 𝐷) → ((𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄 ↔ 𝑠 = (𝑆‘𝑡))) |
| 64 | 28, 30, 61, 63 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄 ↔ 𝑠 = (𝑆‘𝑡))) |
| 65 | 59, 64 | mpbid 232 | 1 ⊢ (𝜑 → 𝑠 = (𝑆‘𝑡)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 ∩ cin 3910 {csn 4585 ◡ccnv 5630 ran crn 5632 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 0gc0g 17378 -gcsg 18843 LModclmod 20742 LSubSpclss 20813 LSpanclspn 20853 HLchlt 39316 LHypclh 39951 DVecHcdvh 41045 LCDualclcd 41553 mapdcmpd 41591 HDMapchdma 41759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-riotaBAD 38919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17380 df-mre 17523 df-mrc 17524 df-acs 17526 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19225 df-oppg 19254 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-nzr 20398 df-rlreg 20579 df-domn 20580 df-drng 20616 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lvec 20986 df-lsatoms 38942 df-lshyp 38943 df-lcv 38985 df-lfl 39024 df-lkr 39052 df-ldual 39090 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 df-lvols 39467 df-lines 39468 df-psubsp 39470 df-pmap 39471 df-padd 39763 df-lhyp 39955 df-laut 39956 df-ldil 40071 df-ltrn 40072 df-trl 40126 df-tgrp 40710 df-tendo 40722 df-edring 40724 df-dveca 40970 df-disoa 40996 df-dvech 41046 df-dib 41106 df-dic 41140 df-dih 41196 df-doch 41315 df-djh 41362 df-lcdual 41554 df-mapd 41592 df-hvmap 41724 df-hdmap1 41760 df-hdmap 41761 |
| This theorem is referenced by: hdmaprnlem10N 41826 |
| Copyright terms: Public domain | W3C validator |