Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem9N Structured version   Visualization version   GIF version

Theorem hdmaprnlem9N 39850
Description: Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 39632 and mapdcnv11N 39652. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem9N (𝜑𝑠 = (𝑆𝑡))

Proof of Theorem hdmaprnlem9N
StepHypRef Expression
1 hdmaprnlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmaprnlem1.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmaprnlem1.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmaprnlem1.n . . . . . 6 𝑁 = (LSpan‘𝑈)
5 hdmaprnlem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 hdmaprnlem1.l . . . . . 6 𝐿 = (LSpan‘𝐶)
7 hdmaprnlem1.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
8 hdmaprnlem1.s . . . . . 6 𝑆 = ((HDMap‘𝐾)‘𝑊)
9 hdmaprnlem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 hdmaprnlem1.se . . . . . 6 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
11 hdmaprnlem1.ve . . . . . 6 (𝜑𝑣𝑉)
12 hdmaprnlem1.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
13 hdmaprnlem1.ue . . . . . 6 (𝜑𝑢𝑉)
14 hdmaprnlem1.un . . . . . 6 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
15 hdmaprnlem1.d . . . . . 6 𝐷 = (Base‘𝐶)
16 hdmaprnlem1.q . . . . . 6 𝑄 = (0g𝐶)
17 hdmaprnlem1.o . . . . . 6 0 = (0g𝑈)
18 hdmaprnlem1.a . . . . . 6 = (+g𝐶)
19 hdmaprnlem1.t2 . . . . . 6 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
20 hdmaprnlem1.p . . . . . 6 + = (+g𝑈)
21 hdmaprnlem1.pt . . . . . 6 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21hdmaprnlem7N 39848 . . . . 5 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21hdmaprnlem8N 39849 . . . . . 6 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19hdmaprnlem4N 39846 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠}))
2523, 24eleqtrd 2842 . . . . 5 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{𝑠}))
2622, 25elind 4132 . . . 4 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ ((𝐿‘{((𝑆𝑢) 𝑠)}) ∩ (𝐿‘{𝑠})))
271, 5, 9lcdlvec 39584 . . . . 5 (𝜑𝐶 ∈ LVec)
281, 5, 9lcdlmod 39585 . . . . . 6 (𝜑𝐶 ∈ LMod)
291, 2, 3, 5, 15, 8, 9, 13hdmapcl 39823 . . . . . 6 (𝜑 → (𝑆𝑢) ∈ 𝐷)
3010eldifad 3903 . . . . . 6 (𝜑𝑠𝐷)
3115, 18lmodvacl 20118 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
3228, 29, 30, 31syl3anc 1369 . . . . 5 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
33 eqid 2739 . . . . . . . . . . . . . 14 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3415, 33, 6lspsncl 20220 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
3528, 30, 34syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
361, 7, 5, 33, 9mapdrn2 39644 . . . . . . . . . . . 12 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
3735, 36eleqtrrd 2843 . . . . . . . . . . 11 (𝜑 → (𝐿‘{𝑠}) ∈ ran 𝑀)
381, 7, 9, 37mapdcnvid2 39650 . . . . . . . . . 10 (𝜑 → (𝑀‘(𝑀‘(𝐿‘{𝑠}))) = (𝐿‘{𝑠}))
3912, 38eqtr4d 2782 . . . . . . . . 9 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{𝑠}))))
40 eqid 2739 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
411, 2, 9dvhlmod 39103 . . . . . . . . . . 11 (𝜑𝑈 ∈ LMod)
423, 40, 4lspsncl 20220 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
4341, 11, 42syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
441, 7, 2, 40, 9, 37mapdcnvcl 39645 . . . . . . . . . 10 (𝜑 → (𝑀‘(𝐿‘{𝑠})) ∈ (LSubSp‘𝑈))
451, 2, 40, 7, 9, 43, 44mapd11 39632 . . . . . . . . 9 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{𝑠}))) ↔ (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{𝑠}))))
4639, 45mpbid 231 . . . . . . . 8 (𝜑 → (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{𝑠})))
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18hdmaprnlem3N 39843 . . . . . . . 8 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
4846, 47eqnetrrd 3013 . . . . . . 7 (𝜑 → (𝑀‘(𝐿‘{𝑠})) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
4915, 33, 6lspsncl 20220 . . . . . . . . . . 11 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
5028, 32, 49syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
5150, 36eleqtrrd 2843 . . . . . . . . 9 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
521, 7, 9, 37, 51mapdcnv11N 39652 . . . . . . . 8 (𝜑 → ((𝑀‘(𝐿‘{𝑠})) = (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ↔ (𝐿‘{𝑠}) = (𝐿‘{((𝑆𝑢) 𝑠)})))
5352necon3bid 2989 . . . . . . 7 (𝜑 → ((𝑀‘(𝐿‘{𝑠})) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ↔ (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)})))
5448, 53mpbid 231 . . . . . 6 (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)}))
5554necomd 3000 . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ≠ (𝐿‘{𝑠}))
5615, 16, 6, 27, 32, 30, 55lspdisj2 20370 . . . 4 (𝜑 → ((𝐿‘{((𝑆𝑢) 𝑠)}) ∩ (𝐿‘{𝑠})) = {𝑄})
5726, 56eleqtrd 2842 . . 3 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ {𝑄})
58 elsni 4583 . . 3 ((𝑠(-g𝐶)(𝑆𝑡)) ∈ {𝑄} → (𝑠(-g𝐶)(𝑆𝑡)) = 𝑄)
5957, 58syl 17 . 2 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) = 𝑄)
601, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19hdmaprnlem4tN 39845 . . . 4 (𝜑𝑡𝑉)
611, 2, 3, 5, 15, 8, 9, 60hdmapcl 39823 . . 3 (𝜑 → (𝑆𝑡) ∈ 𝐷)
62 eqid 2739 . . . 4 (-g𝐶) = (-g𝐶)
6315, 16, 62lmodsubeq0 20163 . . 3 ((𝐶 ∈ LMod ∧ 𝑠𝐷 ∧ (𝑆𝑡) ∈ 𝐷) → ((𝑠(-g𝐶)(𝑆𝑡)) = 𝑄𝑠 = (𝑆𝑡)))
6428, 30, 61, 63syl3anc 1369 . 2 (𝜑 → ((𝑠(-g𝐶)(𝑆𝑡)) = 𝑄𝑠 = (𝑆𝑡)))
6559, 64mpbid 231 1 (𝜑𝑠 = (𝑆𝑡))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wne 2944  cdif 3888  cin 3890  {csn 4566  ccnv 5587  ran crn 5589  cfv 6430  (class class class)co 7268  Basecbs 16893  +gcplusg 16943  0gc0g 17131  -gcsg 18560  LModclmod 20104  LSubSpclss 20174  LSpanclspn 20214  HLchlt 37343  LHypclh 37977  DVecHcdvh 39071  LCDualclcd 39579  mapdcmpd 39617  HDMapchdma 39785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-riotaBAD 36946
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-tpos 8026  df-undef 8073  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-sca 16959  df-vsca 16960  df-0g 17133  df-mre 17276  df-mrc 17277  df-acs 17279  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-p1 18125  df-lat 18131  df-clat 18198  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-grp 18561  df-minusg 18562  df-sbg 18563  df-subg 18733  df-cntz 18904  df-oppg 18931  df-lsm 19222  df-cmn 19369  df-abl 19370  df-mgp 19702  df-ur 19719  df-ring 19766  df-oppr 19843  df-dvdsr 19864  df-unit 19865  df-invr 19895  df-dvr 19906  df-drng 19974  df-lmod 20106  df-lss 20175  df-lsp 20215  df-lvec 20346  df-lsatoms 36969  df-lshyp 36970  df-lcv 37012  df-lfl 37051  df-lkr 37079  df-ldual 37117  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-llines 37491  df-lplanes 37492  df-lvols 37493  df-lines 37494  df-psubsp 37496  df-pmap 37497  df-padd 37789  df-lhyp 37981  df-laut 37982  df-ldil 38097  df-ltrn 38098  df-trl 38152  df-tgrp 38736  df-tendo 38748  df-edring 38750  df-dveca 38996  df-disoa 39022  df-dvech 39072  df-dib 39132  df-dic 39166  df-dih 39222  df-doch 39341  df-djh 39388  df-lcdual 39580  df-mapd 39618  df-hvmap 39750  df-hdmap1 39786  df-hdmap 39787
This theorem is referenced by:  hdmaprnlem10N  39852
  Copyright terms: Public domain W3C validator