Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem9N Structured version   Visualization version   GIF version

Theorem hdmaprnlem9N 41836
Description: Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 41618 and mapdcnv11N 41638. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem9N (𝜑𝑠 = (𝑆𝑡))

Proof of Theorem hdmaprnlem9N
StepHypRef Expression
1 hdmaprnlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmaprnlem1.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmaprnlem1.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmaprnlem1.n . . . . . 6 𝑁 = (LSpan‘𝑈)
5 hdmaprnlem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 hdmaprnlem1.l . . . . . 6 𝐿 = (LSpan‘𝐶)
7 hdmaprnlem1.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
8 hdmaprnlem1.s . . . . . 6 𝑆 = ((HDMap‘𝐾)‘𝑊)
9 hdmaprnlem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 hdmaprnlem1.se . . . . . 6 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
11 hdmaprnlem1.ve . . . . . 6 (𝜑𝑣𝑉)
12 hdmaprnlem1.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
13 hdmaprnlem1.ue . . . . . 6 (𝜑𝑢𝑉)
14 hdmaprnlem1.un . . . . . 6 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
15 hdmaprnlem1.d . . . . . 6 𝐷 = (Base‘𝐶)
16 hdmaprnlem1.q . . . . . 6 𝑄 = (0g𝐶)
17 hdmaprnlem1.o . . . . . 6 0 = (0g𝑈)
18 hdmaprnlem1.a . . . . . 6 = (+g𝐶)
19 hdmaprnlem1.t2 . . . . . 6 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
20 hdmaprnlem1.p . . . . . 6 + = (+g𝑈)
21 hdmaprnlem1.pt . . . . . 6 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21hdmaprnlem7N 41834 . . . . 5 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21hdmaprnlem8N 41835 . . . . . 6 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19hdmaprnlem4N 41832 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠}))
2523, 24eleqtrd 2830 . . . . 5 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{𝑠}))
2622, 25elind 4151 . . . 4 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ ((𝐿‘{((𝑆𝑢) 𝑠)}) ∩ (𝐿‘{𝑠})))
271, 5, 9lcdlvec 41570 . . . . 5 (𝜑𝐶 ∈ LVec)
281, 5, 9lcdlmod 41571 . . . . . 6 (𝜑𝐶 ∈ LMod)
291, 2, 3, 5, 15, 8, 9, 13hdmapcl 41809 . . . . . 6 (𝜑 → (𝑆𝑢) ∈ 𝐷)
3010eldifad 3915 . . . . . 6 (𝜑𝑠𝐷)
3115, 18lmodvacl 20778 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
3228, 29, 30, 31syl3anc 1373 . . . . 5 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
33 eqid 2729 . . . . . . . . . . . . . 14 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3415, 33, 6lspsncl 20880 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
3528, 30, 34syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
361, 7, 5, 33, 9mapdrn2 41630 . . . . . . . . . . . 12 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
3735, 36eleqtrrd 2831 . . . . . . . . . . 11 (𝜑 → (𝐿‘{𝑠}) ∈ ran 𝑀)
381, 7, 9, 37mapdcnvid2 41636 . . . . . . . . . 10 (𝜑 → (𝑀‘(𝑀‘(𝐿‘{𝑠}))) = (𝐿‘{𝑠}))
3912, 38eqtr4d 2767 . . . . . . . . 9 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{𝑠}))))
40 eqid 2729 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
411, 2, 9dvhlmod 41089 . . . . . . . . . . 11 (𝜑𝑈 ∈ LMod)
423, 40, 4lspsncl 20880 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
4341, 11, 42syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
441, 7, 2, 40, 9, 37mapdcnvcl 41631 . . . . . . . . . 10 (𝜑 → (𝑀‘(𝐿‘{𝑠})) ∈ (LSubSp‘𝑈))
451, 2, 40, 7, 9, 43, 44mapd11 41618 . . . . . . . . 9 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{𝑠}))) ↔ (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{𝑠}))))
4639, 45mpbid 232 . . . . . . . 8 (𝜑 → (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{𝑠})))
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18hdmaprnlem3N 41829 . . . . . . . 8 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
4846, 47eqnetrrd 2993 . . . . . . 7 (𝜑 → (𝑀‘(𝐿‘{𝑠})) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
4915, 33, 6lspsncl 20880 . . . . . . . . . . 11 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
5028, 32, 49syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
5150, 36eleqtrrd 2831 . . . . . . . . 9 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
521, 7, 9, 37, 51mapdcnv11N 41638 . . . . . . . 8 (𝜑 → ((𝑀‘(𝐿‘{𝑠})) = (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ↔ (𝐿‘{𝑠}) = (𝐿‘{((𝑆𝑢) 𝑠)})))
5352necon3bid 2969 . . . . . . 7 (𝜑 → ((𝑀‘(𝐿‘{𝑠})) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ↔ (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)})))
5448, 53mpbid 232 . . . . . 6 (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)}))
5554necomd 2980 . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ≠ (𝐿‘{𝑠}))
5615, 16, 6, 27, 32, 30, 55lspdisj2 21034 . . . 4 (𝜑 → ((𝐿‘{((𝑆𝑢) 𝑠)}) ∩ (𝐿‘{𝑠})) = {𝑄})
5726, 56eleqtrd 2830 . . 3 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ {𝑄})
58 elsni 4594 . . 3 ((𝑠(-g𝐶)(𝑆𝑡)) ∈ {𝑄} → (𝑠(-g𝐶)(𝑆𝑡)) = 𝑄)
5957, 58syl 17 . 2 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) = 𝑄)
601, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19hdmaprnlem4tN 41831 . . . 4 (𝜑𝑡𝑉)
611, 2, 3, 5, 15, 8, 9, 60hdmapcl 41809 . . 3 (𝜑 → (𝑆𝑡) ∈ 𝐷)
62 eqid 2729 . . . 4 (-g𝐶) = (-g𝐶)
6315, 16, 62lmodsubeq0 20824 . . 3 ((𝐶 ∈ LMod ∧ 𝑠𝐷 ∧ (𝑆𝑡) ∈ 𝐷) → ((𝑠(-g𝐶)(𝑆𝑡)) = 𝑄𝑠 = (𝑆𝑡)))
6428, 30, 61, 63syl3anc 1373 . 2 (𝜑 → ((𝑠(-g𝐶)(𝑆𝑡)) = 𝑄𝑠 = (𝑆𝑡)))
6559, 64mpbid 232 1 (𝜑𝑠 = (𝑆𝑡))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3900  cin 3902  {csn 4577  ccnv 5618  ran crn 5620  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  0gc0g 17343  -gcsg 18814  LModclmod 20763  LSubSpclss 20834  LSpanclspn 20874  HLchlt 39329  LHypclh 39963  DVecHcdvh 41057  LCDualclcd 41565  mapdcmpd 41603  HDMapchdma 41771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 38932
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-undef 8206  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-oppg 19225  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-nzr 20398  df-rlreg 20579  df-domn 20580  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007  df-lsatoms 38955  df-lshyp 38956  df-lcv 38998  df-lfl 39037  df-lkr 39065  df-ldual 39103  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tgrp 40722  df-tendo 40734  df-edring 40736  df-dveca 40982  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327  df-djh 41374  df-lcdual 41566  df-mapd 41604  df-hvmap 41736  df-hdmap1 41772  df-hdmap 41773
This theorem is referenced by:  hdmaprnlem10N  41838
  Copyright terms: Public domain W3C validator