Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem9N Structured version   Visualization version   GIF version

Theorem hdmaprnlem9N 41860
Description: Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 41642 and mapdcnv11N 41662. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem9N (𝜑𝑠 = (𝑆𝑡))

Proof of Theorem hdmaprnlem9N
StepHypRef Expression
1 hdmaprnlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmaprnlem1.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmaprnlem1.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmaprnlem1.n . . . . . 6 𝑁 = (LSpan‘𝑈)
5 hdmaprnlem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 hdmaprnlem1.l . . . . . 6 𝐿 = (LSpan‘𝐶)
7 hdmaprnlem1.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
8 hdmaprnlem1.s . . . . . 6 𝑆 = ((HDMap‘𝐾)‘𝑊)
9 hdmaprnlem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 hdmaprnlem1.se . . . . . 6 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
11 hdmaprnlem1.ve . . . . . 6 (𝜑𝑣𝑉)
12 hdmaprnlem1.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
13 hdmaprnlem1.ue . . . . . 6 (𝜑𝑢𝑉)
14 hdmaprnlem1.un . . . . . 6 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
15 hdmaprnlem1.d . . . . . 6 𝐷 = (Base‘𝐶)
16 hdmaprnlem1.q . . . . . 6 𝑄 = (0g𝐶)
17 hdmaprnlem1.o . . . . . 6 0 = (0g𝑈)
18 hdmaprnlem1.a . . . . . 6 = (+g𝐶)
19 hdmaprnlem1.t2 . . . . . 6 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
20 hdmaprnlem1.p . . . . . 6 + = (+g𝑈)
21 hdmaprnlem1.pt . . . . . 6 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21hdmaprnlem7N 41858 . . . . 5 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{((𝑆𝑢) 𝑠)}))
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21hdmaprnlem8N 41859 . . . . . 6 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19hdmaprnlem4N 41856 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠}))
2523, 24eleqtrd 2842 . . . . 5 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝐿‘{𝑠}))
2622, 25elind 4199 . . . 4 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ ((𝐿‘{((𝑆𝑢) 𝑠)}) ∩ (𝐿‘{𝑠})))
271, 5, 9lcdlvec 41594 . . . . 5 (𝜑𝐶 ∈ LVec)
281, 5, 9lcdlmod 41595 . . . . . 6 (𝜑𝐶 ∈ LMod)
291, 2, 3, 5, 15, 8, 9, 13hdmapcl 41833 . . . . . 6 (𝜑 → (𝑆𝑢) ∈ 𝐷)
3010eldifad 3962 . . . . . 6 (𝜑𝑠𝐷)
3115, 18lmodvacl 20874 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
3228, 29, 30, 31syl3anc 1372 . . . . 5 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
33 eqid 2736 . . . . . . . . . . . . . 14 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3415, 33, 6lspsncl 20976 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
3528, 30, 34syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
361, 7, 5, 33, 9mapdrn2 41654 . . . . . . . . . . . 12 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
3735, 36eleqtrrd 2843 . . . . . . . . . . 11 (𝜑 → (𝐿‘{𝑠}) ∈ ran 𝑀)
381, 7, 9, 37mapdcnvid2 41660 . . . . . . . . . 10 (𝜑 → (𝑀‘(𝑀‘(𝐿‘{𝑠}))) = (𝐿‘{𝑠}))
3912, 38eqtr4d 2779 . . . . . . . . 9 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{𝑠}))))
40 eqid 2736 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
411, 2, 9dvhlmod 41113 . . . . . . . . . . 11 (𝜑𝑈 ∈ LMod)
423, 40, 4lspsncl 20976 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
4341, 11, 42syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
441, 7, 2, 40, 9, 37mapdcnvcl 41655 . . . . . . . . . 10 (𝜑 → (𝑀‘(𝐿‘{𝑠})) ∈ (LSubSp‘𝑈))
451, 2, 40, 7, 9, 43, 44mapd11 41642 . . . . . . . . 9 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{𝑠}))) ↔ (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{𝑠}))))
4639, 45mpbid 232 . . . . . . . 8 (𝜑 → (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{𝑠})))
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18hdmaprnlem3N 41853 . . . . . . . 8 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
4846, 47eqnetrrd 3008 . . . . . . 7 (𝜑 → (𝑀‘(𝐿‘{𝑠})) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
4915, 33, 6lspsncl 20976 . . . . . . . . . . 11 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
5028, 32, 49syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
5150, 36eleqtrrd 2843 . . . . . . . . 9 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
521, 7, 9, 37, 51mapdcnv11N 41662 . . . . . . . 8 (𝜑 → ((𝑀‘(𝐿‘{𝑠})) = (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ↔ (𝐿‘{𝑠}) = (𝐿‘{((𝑆𝑢) 𝑠)})))
5352necon3bid 2984 . . . . . . 7 (𝜑 → ((𝑀‘(𝐿‘{𝑠})) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ↔ (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)})))
5448, 53mpbid 232 . . . . . 6 (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)}))
5554necomd 2995 . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ≠ (𝐿‘{𝑠}))
5615, 16, 6, 27, 32, 30, 55lspdisj2 21130 . . . 4 (𝜑 → ((𝐿‘{((𝑆𝑢) 𝑠)}) ∩ (𝐿‘{𝑠})) = {𝑄})
5726, 56eleqtrd 2842 . . 3 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ {𝑄})
58 elsni 4642 . . 3 ((𝑠(-g𝐶)(𝑆𝑡)) ∈ {𝑄} → (𝑠(-g𝐶)(𝑆𝑡)) = 𝑄)
5957, 58syl 17 . 2 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) = 𝑄)
601, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19hdmaprnlem4tN 41855 . . . 4 (𝜑𝑡𝑉)
611, 2, 3, 5, 15, 8, 9, 60hdmapcl 41833 . . 3 (𝜑 → (𝑆𝑡) ∈ 𝐷)
62 eqid 2736 . . . 4 (-g𝐶) = (-g𝐶)
6315, 16, 62lmodsubeq0 20920 . . 3 ((𝐶 ∈ LMod ∧ 𝑠𝐷 ∧ (𝑆𝑡) ∈ 𝐷) → ((𝑠(-g𝐶)(𝑆𝑡)) = 𝑄𝑠 = (𝑆𝑡)))
6428, 30, 61, 63syl3anc 1372 . 2 (𝜑 → ((𝑠(-g𝐶)(𝑆𝑡)) = 𝑄𝑠 = (𝑆𝑡)))
6559, 64mpbid 232 1 (𝜑𝑠 = (𝑆𝑡))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  cdif 3947  cin 3949  {csn 4625  ccnv 5683  ran crn 5685  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  0gc0g 17485  -gcsg 18954  LModclmod 20859  LSubSpclss 20930  LSpanclspn 20970  HLchlt 39352  LHypclh 39987  DVecHcdvh 41081  LCDualclcd 41589  mapdcmpd 41627  HDMapchdma 41795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-riotaBAD 38955
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-undef 8299  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17487  df-mre 17630  df-mrc 17631  df-acs 17633  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-cntz 19336  df-oppg 19365  df-lsm 19655  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-nzr 20514  df-rlreg 20695  df-domn 20696  df-drng 20732  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lvec 21103  df-lsatoms 38978  df-lshyp 38979  df-lcv 39021  df-lfl 39060  df-lkr 39088  df-ldual 39126  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-llines 39501  df-lplanes 39502  df-lvols 39503  df-lines 39504  df-psubsp 39506  df-pmap 39507  df-padd 39799  df-lhyp 39991  df-laut 39992  df-ldil 40107  df-ltrn 40108  df-trl 40162  df-tgrp 40746  df-tendo 40758  df-edring 40760  df-dveca 41006  df-disoa 41032  df-dvech 41082  df-dib 41142  df-dic 41176  df-dih 41232  df-doch 41351  df-djh 41398  df-lcdual 41590  df-mapd 41628  df-hvmap 41760  df-hdmap1 41796  df-hdmap 41797
This theorem is referenced by:  hdmaprnlem10N  41862
  Copyright terms: Public domain W3C validator