Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringlsmss | Structured version Visualization version GIF version |
Description: Closure of the product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024.) |
Ref | Expression |
---|---|
ringlsmss.1 | ⊢ 𝐵 = (Base‘𝑅) |
ringlsmss.2 | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringlsmss.3 | ⊢ × = (LSSum‘𝐺) |
ringlsmss.4 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringlsmss.5 | ⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
ringlsmss.6 | ⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
Ref | Expression |
---|---|
ringlsmss | ⊢ (𝜑 → (𝐸 × 𝐹) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlsmss.4 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringlsmss.2 | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | 2 | ringmgp 19856 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
5 | ringlsmss.5 | . 2 ⊢ (𝜑 → 𝐸 ⊆ 𝐵) | |
6 | ringlsmss.6 | . 2 ⊢ (𝜑 → 𝐹 ⊆ 𝐵) | |
7 | ringlsmss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
8 | 2, 7 | mgpbas 19793 | . . 3 ⊢ 𝐵 = (Base‘𝐺) |
9 | ringlsmss.3 | . . 3 ⊢ × = (LSSum‘𝐺) | |
10 | 8, 9 | lsmssv 19315 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐸 ⊆ 𝐵 ∧ 𝐹 ⊆ 𝐵) → (𝐸 × 𝐹) ⊆ 𝐵) |
11 | 4, 5, 6, 10 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝐸 × 𝐹) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 ‘cfv 6463 (class class class)co 7313 Basecbs 16979 Mndcmnd 18452 LSSumclsm 19306 mulGrpcmgp 19787 Ringcrg 19850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-plusg 17042 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-lsm 19308 df-mgp 19788 df-ring 19852 |
This theorem is referenced by: mxidlprm 31745 idlsrgmulrcl 31760 zarclsun 31926 |
Copyright terms: Public domain | W3C validator |