MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcorevlem Structured version   Visualization version   GIF version

Theorem pcorevlem 24874
Description: Lemma for pcorev 24875. Prove continuity of the homotopy function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.)
Hypotheses
Ref Expression
pcorev.1 𝐺 = (π‘₯ ∈ (0[,]1) ↦ (πΉβ€˜(1 βˆ’ π‘₯)))
pcorev.2 𝑃 = ((0[,]1) Γ— {(πΉβ€˜1)})
pcorevlem.3 𝐻 = (𝑠 ∈ (0[,]1), 𝑑 ∈ (0[,]1) ↦ (πΉβ€˜if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))))))
Assertion
Ref Expression
pcorevlem (𝐹 ∈ (II Cn 𝐽) β†’ (𝐻 ∈ ((𝐺(*π‘β€˜π½)𝐹)(PHtpyβ€˜π½)𝑃) ∧ (𝐺(*π‘β€˜π½)𝐹)( ≃phβ€˜π½)𝑃))
Distinct variable groups:   𝑑,𝑠,π‘₯,𝐹   𝐺,𝑠,𝑑   𝐽,𝑠,𝑑,π‘₯   𝑃,𝑠,𝑑,π‘₯
Allowed substitution hints:   𝐺(π‘₯)   𝐻(π‘₯,𝑑,𝑠)

Proof of Theorem pcorevlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pcorev.1 . . . . 5 𝐺 = (π‘₯ ∈ (0[,]1) ↦ (πΉβ€˜(1 βˆ’ π‘₯)))
2 iitopon 24720 . . . . . . 7 II ∈ (TopOnβ€˜(0[,]1))
32a1i 11 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) β†’ II ∈ (TopOnβ€˜(0[,]1)))
4 iirevcn 24772 . . . . . . 7 (π‘₯ ∈ (0[,]1) ↦ (1 βˆ’ π‘₯)) ∈ (II Cn II)
54a1i 11 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) β†’ (π‘₯ ∈ (0[,]1) ↦ (1 βˆ’ π‘₯)) ∈ (II Cn II))
6 id 22 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) β†’ 𝐹 ∈ (II Cn 𝐽))
73, 5, 6cnmpt11f 23489 . . . . 5 (𝐹 ∈ (II Cn 𝐽) β†’ (π‘₯ ∈ (0[,]1) ↦ (πΉβ€˜(1 βˆ’ π‘₯))) ∈ (II Cn 𝐽))
81, 7eqeltrid 2829 . . . 4 (𝐹 ∈ (II Cn 𝐽) β†’ 𝐺 ∈ (II Cn 𝐽))
9 1elunit 13443 . . . . 5 1 ∈ (0[,]1)
10 oveq2 7409 . . . . . . . 8 (π‘₯ = 1 β†’ (1 βˆ’ π‘₯) = (1 βˆ’ 1))
11 1m1e0 12280 . . . . . . . 8 (1 βˆ’ 1) = 0
1210, 11eqtrdi 2780 . . . . . . 7 (π‘₯ = 1 β†’ (1 βˆ’ π‘₯) = 0)
1312fveq2d 6885 . . . . . 6 (π‘₯ = 1 β†’ (πΉβ€˜(1 βˆ’ π‘₯)) = (πΉβ€˜0))
14 fvex 6894 . . . . . 6 (πΉβ€˜0) ∈ V
1513, 1, 14fvmpt 6988 . . . . 5 (1 ∈ (0[,]1) β†’ (πΊβ€˜1) = (πΉβ€˜0))
169, 15mp1i 13 . . . 4 (𝐹 ∈ (II Cn 𝐽) β†’ (πΊβ€˜1) = (πΉβ€˜0))
178, 6, 16pcocn 24865 . . 3 (𝐹 ∈ (II Cn 𝐽) β†’ (𝐺(*π‘β€˜π½)𝐹) ∈ (II Cn 𝐽))
18 cntop2 23066 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) β†’ 𝐽 ∈ Top)
19 toptopon2 22741 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
2018, 19sylib 217 . . . . 5 (𝐹 ∈ (II Cn 𝐽) β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
21 iiuni 24722 . . . . . . 7 (0[,]1) = βˆͺ II
22 eqid 2724 . . . . . . 7 βˆͺ 𝐽 = βˆͺ 𝐽
2321, 22cnf 23071 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) β†’ 𝐹:(0[,]1)⟢βˆͺ 𝐽)
24 ffvelcdm 7073 . . . . . 6 ((𝐹:(0[,]1)⟢βˆͺ 𝐽 ∧ 1 ∈ (0[,]1)) β†’ (πΉβ€˜1) ∈ βˆͺ 𝐽)
2523, 9, 24sylancl 585 . . . . 5 (𝐹 ∈ (II Cn 𝐽) β†’ (πΉβ€˜1) ∈ βˆͺ 𝐽)
26 pcorev.2 . . . . . 6 𝑃 = ((0[,]1) Γ— {(πΉβ€˜1)})
2726pcoptcl 24869 . . . . 5 ((𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽) ∧ (πΉβ€˜1) ∈ βˆͺ 𝐽) β†’ (𝑃 ∈ (II Cn 𝐽) ∧ (π‘ƒβ€˜0) = (πΉβ€˜1) ∧ (π‘ƒβ€˜1) = (πΉβ€˜1)))
2820, 25, 27syl2anc 583 . . . 4 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑃 ∈ (II Cn 𝐽) ∧ (π‘ƒβ€˜0) = (πΉβ€˜1) ∧ (π‘ƒβ€˜1) = (πΉβ€˜1)))
2928simp1d 1139 . . 3 (𝐹 ∈ (II Cn 𝐽) β†’ 𝑃 ∈ (II Cn 𝐽))
30 pcorevlem.3 . . . 4 𝐻 = (𝑠 ∈ (0[,]1), 𝑑 ∈ (0[,]1) ↦ (πΉβ€˜if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))))))
31 eqid 2724 . . . . . 6 (topGenβ€˜ran (,)) = (topGenβ€˜ran (,))
32 eqid 2724 . . . . . 6 ((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) = ((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2)))
33 eqid 2724 . . . . . 6 ((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) = ((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1))
34 dfii2 24723 . . . . . 6 II = ((topGenβ€˜ran (,)) β†Ύt (0[,]1))
35 0red 11213 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) β†’ 0 ∈ ℝ)
36 1red 11211 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) β†’ 1 ∈ ℝ)
37 halfre 12422 . . . . . . . 8 (1 / 2) ∈ ℝ
38 halfge0 12425 . . . . . . . 8 0 ≀ (1 / 2)
39 1re 11210 . . . . . . . . 9 1 ∈ ℝ
40 halflt1 12426 . . . . . . . . 9 (1 / 2) < 1
4137, 39, 40ltleii 11333 . . . . . . . 8 (1 / 2) ≀ 1
42 elicc01 13439 . . . . . . . 8 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≀ (1 / 2) ∧ (1 / 2) ≀ 1))
4337, 38, 41, 42mpbir3an 1338 . . . . . . 7 (1 / 2) ∈ (0[,]1)
4443a1i 11 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) β†’ (1 / 2) ∈ (0[,]1))
45 simprl 768 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑠 = (1 / 2) ∧ 𝑑 ∈ (0[,]1))) β†’ 𝑠 = (1 / 2))
4645oveq2d 7417 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑠 = (1 / 2) ∧ 𝑑 ∈ (0[,]1))) β†’ (2 Β· 𝑠) = (2 Β· (1 / 2)))
47 2cn 12283 . . . . . . . . . . 11 2 ∈ β„‚
48 2ne0 12312 . . . . . . . . . . 11 2 β‰  0
4947, 48recidi 11941 . . . . . . . . . 10 (2 Β· (1 / 2)) = 1
5046, 49eqtrdi 2780 . . . . . . . . 9 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑠 = (1 / 2) ∧ 𝑑 ∈ (0[,]1))) β†’ (2 Β· 𝑠) = 1)
5150oveq1d 7416 . . . . . . . . . . . 12 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑠 = (1 / 2) ∧ 𝑑 ∈ (0[,]1))) β†’ ((2 Β· 𝑠) βˆ’ 1) = (1 βˆ’ 1))
5251, 11eqtrdi 2780 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑠 = (1 / 2) ∧ 𝑑 ∈ (0[,]1))) β†’ ((2 Β· 𝑠) βˆ’ 1) = 0)
5352oveq2d 7417 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑠 = (1 / 2) ∧ 𝑑 ∈ (0[,]1))) β†’ (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)) = (1 βˆ’ 0))
54 1m0e1 12329 . . . . . . . . . 10 (1 βˆ’ 0) = 1
5553, 54eqtrdi 2780 . . . . . . . . 9 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑠 = (1 / 2) ∧ 𝑑 ∈ (0[,]1))) β†’ (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)) = 1)
5650, 55eqtr4d 2767 . . . . . . . 8 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑠 = (1 / 2) ∧ 𝑑 ∈ (0[,]1))) β†’ (2 Β· 𝑠) = (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))
5756oveq2d 7417 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑠 = (1 / 2) ∧ 𝑑 ∈ (0[,]1))) β†’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠)) = ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))))
5857oveq2d 7417 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑠 = (1 / 2) ∧ 𝑑 ∈ (0[,]1))) β†’ (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))) = (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))))
59 retopon 24601 . . . . . . . . 9 (topGenβ€˜ran (,)) ∈ (TopOnβ€˜β„)
60 0re 11212 . . . . . . . . . 10 0 ∈ ℝ
61 iccssre 13402 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) β†’ (0[,](1 / 2)) βŠ† ℝ)
6260, 37, 61mp2an 689 . . . . . . . . 9 (0[,](1 / 2)) βŠ† ℝ
63 resttopon 22986 . . . . . . . . 9 (((topGenβ€˜ran (,)) ∈ (TopOnβ€˜β„) ∧ (0[,](1 / 2)) βŠ† ℝ) β†’ ((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) ∈ (TopOnβ€˜(0[,](1 / 2))))
6459, 62, 63mp2an 689 . . . . . . . 8 ((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) ∈ (TopOnβ€˜(0[,](1 / 2)))
6564a1i 11 . . . . . . 7 (𝐹 ∈ (II Cn 𝐽) β†’ ((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) ∈ (TopOnβ€˜(0[,](1 / 2))))
6665, 3cnmpt2nd 23494 . . . . . . . . 9 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ (0[,](1 / 2)), 𝑑 ∈ (0[,]1) ↦ 𝑑) ∈ ((((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) Γ—t II) Cn II))
67 oveq2 7409 . . . . . . . . 9 (π‘₯ = 𝑑 β†’ (1 βˆ’ π‘₯) = (1 βˆ’ 𝑑))
6865, 3, 66, 3, 5, 67cnmpt21 23496 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ (0[,](1 / 2)), 𝑑 ∈ (0[,]1) ↦ (1 βˆ’ 𝑑)) ∈ ((((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) Γ—t II) Cn II))
6965, 3cnmpt1st 23493 . . . . . . . . 9 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ (0[,](1 / 2)), 𝑑 ∈ (0[,]1) ↦ 𝑠) ∈ ((((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) Γ—t II) Cn ((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2)))))
7032iihalf1cn 24774 . . . . . . . . . 10 (π‘₯ ∈ (0[,](1 / 2)) ↦ (2 Β· π‘₯)) ∈ (((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) Cn II)
7170a1i 11 . . . . . . . . 9 (𝐹 ∈ (II Cn 𝐽) β†’ (π‘₯ ∈ (0[,](1 / 2)) ↦ (2 Β· π‘₯)) ∈ (((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) Cn II))
72 oveq2 7409 . . . . . . . . 9 (π‘₯ = 𝑠 β†’ (2 Β· π‘₯) = (2 Β· 𝑠))
7365, 3, 69, 65, 71, 72cnmpt21 23496 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ (0[,](1 / 2)), 𝑑 ∈ (0[,]1) ↦ (2 Β· 𝑠)) ∈ ((((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) Γ—t II) Cn II))
74 iimulcn 24782 . . . . . . . . 9 (π‘₯ ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (π‘₯ Β· 𝑦)) ∈ ((II Γ—t II) Cn II)
7574a1i 11 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) β†’ (π‘₯ ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (π‘₯ Β· 𝑦)) ∈ ((II Γ—t II) Cn II))
76 oveq12 7410 . . . . . . . 8 ((π‘₯ = (1 βˆ’ 𝑑) ∧ 𝑦 = (2 Β· 𝑠)) β†’ (π‘₯ Β· 𝑦) = ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠)))
7765, 3, 68, 73, 3, 3, 75, 76cnmpt22 23499 . . . . . . 7 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ (0[,](1 / 2)), 𝑑 ∈ (0[,]1) ↦ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))) ∈ ((((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) Γ—t II) Cn II))
78 oveq2 7409 . . . . . . 7 (π‘₯ = ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠)) β†’ (1 βˆ’ π‘₯) = (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))))
7965, 3, 77, 3, 5, 78cnmpt21 23496 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ (0[,](1 / 2)), 𝑑 ∈ (0[,]1) ↦ (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠)))) ∈ ((((topGenβ€˜ran (,)) β†Ύt (0[,](1 / 2))) Γ—t II) Cn II))
80 iccssre 13402 . . . . . . . . . 10 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) β†’ ((1 / 2)[,]1) βŠ† ℝ)
8137, 39, 80mp2an 689 . . . . . . . . 9 ((1 / 2)[,]1) βŠ† ℝ
82 resttopon 22986 . . . . . . . . 9 (((topGenβ€˜ran (,)) ∈ (TopOnβ€˜β„) ∧ ((1 / 2)[,]1) βŠ† ℝ) β†’ ((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) ∈ (TopOnβ€˜((1 / 2)[,]1)))
8359, 81, 82mp2an 689 . . . . . . . 8 ((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) ∈ (TopOnβ€˜((1 / 2)[,]1))
8483a1i 11 . . . . . . 7 (𝐹 ∈ (II Cn 𝐽) β†’ ((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) ∈ (TopOnβ€˜((1 / 2)[,]1)))
8584, 3cnmpt2nd 23494 . . . . . . . . 9 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ ((1 / 2)[,]1), 𝑑 ∈ (0[,]1) ↦ 𝑑) ∈ ((((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) Γ—t II) Cn II))
8684, 3, 85, 3, 5, 67cnmpt21 23496 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ ((1 / 2)[,]1), 𝑑 ∈ (0[,]1) ↦ (1 βˆ’ 𝑑)) ∈ ((((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) Γ—t II) Cn II))
8784, 3cnmpt1st 23493 . . . . . . . . . 10 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ ((1 / 2)[,]1), 𝑑 ∈ (0[,]1) ↦ 𝑠) ∈ ((((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) Γ—t II) Cn ((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1))))
8833iihalf2cn 24777 . . . . . . . . . . 11 (π‘₯ ∈ ((1 / 2)[,]1) ↦ ((2 Β· π‘₯) βˆ’ 1)) ∈ (((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) Cn II)
8988a1i 11 . . . . . . . . . 10 (𝐹 ∈ (II Cn 𝐽) β†’ (π‘₯ ∈ ((1 / 2)[,]1) ↦ ((2 Β· π‘₯) βˆ’ 1)) ∈ (((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) Cn II))
9072oveq1d 7416 . . . . . . . . . 10 (π‘₯ = 𝑠 β†’ ((2 Β· π‘₯) βˆ’ 1) = ((2 Β· 𝑠) βˆ’ 1))
9184, 3, 87, 84, 89, 90cnmpt21 23496 . . . . . . . . 9 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ ((1 / 2)[,]1), 𝑑 ∈ (0[,]1) ↦ ((2 Β· 𝑠) βˆ’ 1)) ∈ ((((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) Γ—t II) Cn II))
92 oveq2 7409 . . . . . . . . 9 (π‘₯ = ((2 Β· 𝑠) βˆ’ 1) β†’ (1 βˆ’ π‘₯) = (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))
9384, 3, 91, 3, 5, 92cnmpt21 23496 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ ((1 / 2)[,]1), 𝑑 ∈ (0[,]1) ↦ (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))) ∈ ((((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) Γ—t II) Cn II))
94 oveq12 7410 . . . . . . . 8 ((π‘₯ = (1 βˆ’ 𝑑) ∧ 𝑦 = (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))) β†’ (π‘₯ Β· 𝑦) = ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))))
9584, 3, 86, 93, 3, 3, 75, 94cnmpt22 23499 . . . . . . 7 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ ((1 / 2)[,]1), 𝑑 ∈ (0[,]1) ↦ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))) ∈ ((((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) Γ—t II) Cn II))
96 oveq2 7409 . . . . . . 7 (π‘₯ = ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))) β†’ (1 βˆ’ π‘₯) = (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))))
9784, 3, 95, 3, 5, 96cnmpt21 23496 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ ((1 / 2)[,]1), 𝑑 ∈ (0[,]1) ↦ (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))))) ∈ ((((topGenβ€˜ran (,)) β†Ύt ((1 / 2)[,]1)) Γ—t II) Cn II))
9831, 32, 33, 34, 35, 36, 44, 3, 58, 79, 97cnmpopc 24770 . . . . 5 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ (0[,]1), 𝑑 ∈ (0[,]1) ↦ if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))))) ∈ ((II Γ—t II) Cn II))
993, 3, 98, 6cnmpt21f 23497 . . . 4 (𝐹 ∈ (II Cn 𝐽) β†’ (𝑠 ∈ (0[,]1), 𝑑 ∈ (0[,]1) ↦ (πΉβ€˜if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))))))) ∈ ((II Γ—t II) Cn 𝐽))
10030, 99eqeltrid 2829 . . 3 (𝐹 ∈ (II Cn 𝐽) β†’ 𝐻 ∈ ((II Γ—t II) Cn 𝐽))
101 simpr 484 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ 𝑦 ∈ (0[,]1))
102 0elunit 13442 . . . . 5 0 ∈ (0[,]1)
103 simpl 482 . . . . . . . . 9 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ 𝑠 = 𝑦)
104103breq1d 5148 . . . . . . . 8 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ (𝑠 ≀ (1 / 2) ↔ 𝑦 ≀ (1 / 2)))
105 simpr 484 . . . . . . . . . . . 12 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ 𝑑 = 0)
106105oveq2d 7417 . . . . . . . . . . 11 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ (1 βˆ’ 𝑑) = (1 βˆ’ 0))
107106, 54eqtrdi 2780 . . . . . . . . . 10 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ (1 βˆ’ 𝑑) = 1)
108103oveq2d 7417 . . . . . . . . . 10 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ (2 Β· 𝑠) = (2 Β· 𝑦))
109107, 108oveq12d 7419 . . . . . . . . 9 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠)) = (1 Β· (2 Β· 𝑦)))
110109oveq2d 7417 . . . . . . . 8 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))) = (1 βˆ’ (1 Β· (2 Β· 𝑦))))
111108oveq1d 7416 . . . . . . . . . . 11 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ ((2 Β· 𝑠) βˆ’ 1) = ((2 Β· 𝑦) βˆ’ 1))
112111oveq2d 7417 . . . . . . . . . 10 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)) = (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))
113107, 112oveq12d 7419 . . . . . . . . 9 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))) = (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))
114113oveq2d 7417 . . . . . . . 8 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))) = (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))
115104, 110, 114ifbieq12d 4548 . . . . . . 7 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))))) = if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))))
116115fveq2d 6885 . . . . . 6 ((𝑠 = 𝑦 ∧ 𝑑 = 0) β†’ (πΉβ€˜if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))))) = (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))))
117 fvex 6894 . . . . . 6 (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))) ∈ V
118116, 30, 117ovmpoa 7555 . . . . 5 ((𝑦 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) β†’ (𝑦𝐻0) = (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))))
119101, 102, 118sylancl 585 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (𝑦𝐻0) = (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))))
120 iftrue 4526 . . . . . . . 8 (𝑦 ≀ (1 / 2) β†’ if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))) = (1 βˆ’ (1 Β· (2 Β· 𝑦))))
121120adantl 481 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) ∧ 𝑦 ≀ (1 / 2)) β†’ if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))) = (1 βˆ’ (1 Β· (2 Β· 𝑦))))
122121fveq2d 6885 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) ∧ 𝑦 ≀ (1 / 2)) β†’ (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))) = (πΉβ€˜(1 βˆ’ (1 Β· (2 Β· 𝑦)))))
123 elii1 24779 . . . . . . . 8 (𝑦 ∈ (0[,](1 / 2)) ↔ (𝑦 ∈ (0[,]1) ∧ 𝑦 ≀ (1 / 2)))
1248, 6pcoval1 24861 . . . . . . . . 9 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,](1 / 2))) β†’ ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦) = (πΊβ€˜(2 Β· 𝑦)))
125 iihalf1 24773 . . . . . . . . . . 11 (𝑦 ∈ (0[,](1 / 2)) β†’ (2 Β· 𝑦) ∈ (0[,]1))
126125adantl 481 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,](1 / 2))) β†’ (2 Β· 𝑦) ∈ (0[,]1))
127 oveq2 7409 . . . . . . . . . . . . 13 (π‘₯ = (2 Β· 𝑦) β†’ (1 βˆ’ π‘₯) = (1 βˆ’ (2 Β· 𝑦)))
128127fveq2d 6885 . . . . . . . . . . . 12 (π‘₯ = (2 Β· 𝑦) β†’ (πΉβ€˜(1 βˆ’ π‘₯)) = (πΉβ€˜(1 βˆ’ (2 Β· 𝑦))))
129 fvex 6894 . . . . . . . . . . . 12 (πΉβ€˜(1 βˆ’ (2 Β· 𝑦))) ∈ V
130128, 1, 129fvmpt 6988 . . . . . . . . . . 11 ((2 Β· 𝑦) ∈ (0[,]1) β†’ (πΊβ€˜(2 Β· 𝑦)) = (πΉβ€˜(1 βˆ’ (2 Β· 𝑦))))
131 unitssre 13472 . . . . . . . . . . . . . . . 16 (0[,]1) βŠ† ℝ
132131sseli 3970 . . . . . . . . . . . . . . 15 ((2 Β· 𝑦) ∈ (0[,]1) β†’ (2 Β· 𝑦) ∈ ℝ)
133132recnd 11238 . . . . . . . . . . . . . 14 ((2 Β· 𝑦) ∈ (0[,]1) β†’ (2 Β· 𝑦) ∈ β„‚)
134133mullidd 11228 . . . . . . . . . . . . 13 ((2 Β· 𝑦) ∈ (0[,]1) β†’ (1 Β· (2 Β· 𝑦)) = (2 Β· 𝑦))
135134oveq2d 7417 . . . . . . . . . . . 12 ((2 Β· 𝑦) ∈ (0[,]1) β†’ (1 βˆ’ (1 Β· (2 Β· 𝑦))) = (1 βˆ’ (2 Β· 𝑦)))
136135fveq2d 6885 . . . . . . . . . . 11 ((2 Β· 𝑦) ∈ (0[,]1) β†’ (πΉβ€˜(1 βˆ’ (1 Β· (2 Β· 𝑦)))) = (πΉβ€˜(1 βˆ’ (2 Β· 𝑦))))
137130, 136eqtr4d 2767 . . . . . . . . . 10 ((2 Β· 𝑦) ∈ (0[,]1) β†’ (πΊβ€˜(2 Β· 𝑦)) = (πΉβ€˜(1 βˆ’ (1 Β· (2 Β· 𝑦)))))
138126, 137syl 17 . . . . . . . . 9 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,](1 / 2))) β†’ (πΊβ€˜(2 Β· 𝑦)) = (πΉβ€˜(1 βˆ’ (1 Β· (2 Β· 𝑦)))))
139124, 138eqtrd 2764 . . . . . . . 8 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,](1 / 2))) β†’ ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦) = (πΉβ€˜(1 βˆ’ (1 Β· (2 Β· 𝑦)))))
140123, 139sylan2br 594 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑦 ∈ (0[,]1) ∧ 𝑦 ≀ (1 / 2))) β†’ ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦) = (πΉβ€˜(1 βˆ’ (1 Β· (2 Β· 𝑦)))))
141140anassrs 467 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) ∧ 𝑦 ≀ (1 / 2)) β†’ ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦) = (πΉβ€˜(1 βˆ’ (1 Β· (2 Β· 𝑦)))))
142122, 141eqtr4d 2767 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) ∧ 𝑦 ≀ (1 / 2)) β†’ (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))) = ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦))
143 iffalse 4529 . . . . . . . 8 (Β¬ 𝑦 ≀ (1 / 2) β†’ if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))) = (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))
144143adantl 481 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) ∧ Β¬ 𝑦 ≀ (1 / 2)) β†’ if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))) = (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))
145144fveq2d 6885 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) ∧ Β¬ 𝑦 ≀ (1 / 2)) β†’ (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))) = (πΉβ€˜(1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))))
146 elii2 24780 . . . . . . . 8 ((𝑦 ∈ (0[,]1) ∧ Β¬ 𝑦 ≀ (1 / 2)) β†’ 𝑦 ∈ ((1 / 2)[,]1))
1478, 6, 16pcoval2 24864 . . . . . . . . 9 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ ((1 / 2)[,]1)) β†’ ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦) = (πΉβ€˜((2 Β· 𝑦) βˆ’ 1)))
148 iihalf2 24776 . . . . . . . . . . . 12 (𝑦 ∈ ((1 / 2)[,]1) β†’ ((2 Β· 𝑦) βˆ’ 1) ∈ (0[,]1))
149148adantl 481 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ ((1 / 2)[,]1)) β†’ ((2 Β· 𝑦) βˆ’ 1) ∈ (0[,]1))
150 ax-1cn 11163 . . . . . . . . . . . . . . 15 1 ∈ β„‚
151131sseli 3970 . . . . . . . . . . . . . . . 16 (((2 Β· 𝑦) βˆ’ 1) ∈ (0[,]1) β†’ ((2 Β· 𝑦) βˆ’ 1) ∈ ℝ)
152151recnd 11238 . . . . . . . . . . . . . . 15 (((2 Β· 𝑦) βˆ’ 1) ∈ (0[,]1) β†’ ((2 Β· 𝑦) βˆ’ 1) ∈ β„‚)
153 subcl 11455 . . . . . . . . . . . . . . 15 ((1 ∈ β„‚ ∧ ((2 Β· 𝑦) βˆ’ 1) ∈ β„‚) β†’ (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)) ∈ β„‚)
154150, 152, 153sylancr 586 . . . . . . . . . . . . . 14 (((2 Β· 𝑦) βˆ’ 1) ∈ (0[,]1) β†’ (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)) ∈ β„‚)
155154mullidd 11228 . . . . . . . . . . . . 13 (((2 Β· 𝑦) βˆ’ 1) ∈ (0[,]1) β†’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))) = (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))
156155oveq2d 7417 . . . . . . . . . . . 12 (((2 Β· 𝑦) βˆ’ 1) ∈ (0[,]1) β†’ (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))) = (1 βˆ’ (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))
157 nncan 11485 . . . . . . . . . . . . 13 ((1 ∈ β„‚ ∧ ((2 Β· 𝑦) βˆ’ 1) ∈ β„‚) β†’ (1 βˆ’ (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))) = ((2 Β· 𝑦) βˆ’ 1))
158150, 152, 157sylancr 586 . . . . . . . . . . . 12 (((2 Β· 𝑦) βˆ’ 1) ∈ (0[,]1) β†’ (1 βˆ’ (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))) = ((2 Β· 𝑦) βˆ’ 1))
159156, 158eqtr2d 2765 . . . . . . . . . . 11 (((2 Β· 𝑦) βˆ’ 1) ∈ (0[,]1) β†’ ((2 Β· 𝑦) βˆ’ 1) = (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))
160149, 159syl 17 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ ((1 / 2)[,]1)) β†’ ((2 Β· 𝑦) βˆ’ 1) = (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))
161160fveq2d 6885 . . . . . . . . 9 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ ((1 / 2)[,]1)) β†’ (πΉβ€˜((2 Β· 𝑦) βˆ’ 1)) = (πΉβ€˜(1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))))
162147, 161eqtrd 2764 . . . . . . . 8 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ ((1 / 2)[,]1)) β†’ ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦) = (πΉβ€˜(1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))))
163146, 162sylan2 592 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝑦 ∈ (0[,]1) ∧ Β¬ 𝑦 ≀ (1 / 2))) β†’ ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦) = (πΉβ€˜(1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))))
164163anassrs 467 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) ∧ Β¬ 𝑦 ≀ (1 / 2)) β†’ ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦) = (πΉβ€˜(1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))))
165145, 164eqtr4d 2767 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) ∧ Β¬ 𝑦 ≀ (1 / 2)) β†’ (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))) = ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦))
166142, 165pm2.61dan 810 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (1 Β· (2 Β· 𝑦))), (1 βˆ’ (1 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))) = ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦))
167119, 166eqtrd 2764 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (𝑦𝐻0) = ((𝐺(*π‘β€˜π½)𝐹)β€˜π‘¦))
168131sseli 3970 . . . . . . . . . . . . 13 (𝑦 ∈ (0[,]1) β†’ 𝑦 ∈ ℝ)
169168recnd 11238 . . . . . . . . . . . 12 (𝑦 ∈ (0[,]1) β†’ 𝑦 ∈ β„‚)
170 mulcl 11189 . . . . . . . . . . . 12 ((2 ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ (2 Β· 𝑦) ∈ β„‚)
17147, 169, 170sylancr 586 . . . . . . . . . . 11 (𝑦 ∈ (0[,]1) β†’ (2 Β· 𝑦) ∈ β„‚)
172171adantl 481 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (2 Β· 𝑦) ∈ β„‚)
173172mul02d 11408 . . . . . . . . 9 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (0 Β· (2 Β· 𝑦)) = 0)
174173oveq2d 7417 . . . . . . . 8 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (1 βˆ’ (0 Β· (2 Β· 𝑦))) = (1 βˆ’ 0))
175174, 54eqtrdi 2780 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (1 βˆ’ (0 Β· (2 Β· 𝑦))) = 1)
176 subcl 11455 . . . . . . . . . . . 12 (((2 Β· 𝑦) ∈ β„‚ ∧ 1 ∈ β„‚) β†’ ((2 Β· 𝑦) βˆ’ 1) ∈ β„‚)
177172, 150, 176sylancl 585 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ ((2 Β· 𝑦) βˆ’ 1) ∈ β„‚)
178150, 177, 153sylancr 586 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)) ∈ β„‚)
179178mul02d 11408 . . . . . . . . 9 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))) = 0)
180179oveq2d 7417 . . . . . . . 8 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (1 βˆ’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))) = (1 βˆ’ 0))
181180, 54eqtrdi 2780 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (1 βˆ’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))) = 1)
182175, 181ifeq12d 4541 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ if(𝑦 ≀ (1 / 2), (1 βˆ’ (0 Β· (2 Β· 𝑦))), (1 βˆ’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))) = if(𝑦 ≀ (1 / 2), 1, 1))
183 ifid 4560 . . . . . 6 if(𝑦 ≀ (1 / 2), 1, 1) = 1
184182, 183eqtrdi 2780 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ if(𝑦 ≀ (1 / 2), (1 βˆ’ (0 Β· (2 Β· 𝑦))), (1 βˆ’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))) = 1)
185184fveq2d 6885 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (0 Β· (2 Β· 𝑦))), (1 βˆ’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))) = (πΉβ€˜1))
186 simpl 482 . . . . . . . . 9 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ 𝑠 = 𝑦)
187186breq1d 5148 . . . . . . . 8 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ (𝑠 ≀ (1 / 2) ↔ 𝑦 ≀ (1 / 2)))
188 simpr 484 . . . . . . . . . . . 12 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ 𝑑 = 1)
189188oveq2d 7417 . . . . . . . . . . 11 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ (1 βˆ’ 𝑑) = (1 βˆ’ 1))
190189, 11eqtrdi 2780 . . . . . . . . . 10 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ (1 βˆ’ 𝑑) = 0)
191186oveq2d 7417 . . . . . . . . . 10 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ (2 Β· 𝑠) = (2 Β· 𝑦))
192190, 191oveq12d 7419 . . . . . . . . 9 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠)) = (0 Β· (2 Β· 𝑦)))
193192oveq2d 7417 . . . . . . . 8 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))) = (1 βˆ’ (0 Β· (2 Β· 𝑦))))
194191oveq1d 7416 . . . . . . . . . . 11 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ ((2 Β· 𝑠) βˆ’ 1) = ((2 Β· 𝑦) βˆ’ 1))
195194oveq2d 7417 . . . . . . . . . 10 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)) = (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))
196190, 195oveq12d 7419 . . . . . . . . 9 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))) = (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))
197196oveq2d 7417 . . . . . . . 8 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))) = (1 βˆ’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))
198187, 193, 197ifbieq12d 4548 . . . . . . 7 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))))) = if(𝑦 ≀ (1 / 2), (1 βˆ’ (0 Β· (2 Β· 𝑦))), (1 βˆ’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1))))))
199198fveq2d 6885 . . . . . 6 ((𝑠 = 𝑦 ∧ 𝑑 = 1) β†’ (πΉβ€˜if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))))) = (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (0 Β· (2 Β· 𝑦))), (1 βˆ’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))))
200 fvex 6894 . . . . . 6 (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (0 Β· (2 Β· 𝑦))), (1 βˆ’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))) ∈ V
201199, 30, 200ovmpoa 7555 . . . . 5 ((𝑦 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) β†’ (𝑦𝐻1) = (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (0 Β· (2 Β· 𝑦))), (1 βˆ’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))))
202101, 9, 201sylancl 585 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (𝑦𝐻1) = (πΉβ€˜if(𝑦 ≀ (1 / 2), (1 βˆ’ (0 Β· (2 Β· 𝑦))), (1 βˆ’ (0 Β· (1 βˆ’ ((2 Β· 𝑦) βˆ’ 1)))))))
20326fveq1i 6882 . . . . 5 (π‘ƒβ€˜π‘¦) = (((0[,]1) Γ— {(πΉβ€˜1)})β€˜π‘¦)
204 fvex 6894 . . . . . . 7 (πΉβ€˜1) ∈ V
205204fvconst2 7197 . . . . . 6 (𝑦 ∈ (0[,]1) β†’ (((0[,]1) Γ— {(πΉβ€˜1)})β€˜π‘¦) = (πΉβ€˜1))
206205adantl 481 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (((0[,]1) Γ— {(πΉβ€˜1)})β€˜π‘¦) = (πΉβ€˜1))
207203, 206eqtrid 2776 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (π‘ƒβ€˜π‘¦) = (πΉβ€˜1))
208185, 202, 2073eqtr4d 2774 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (𝑦𝐻1) = (π‘ƒβ€˜π‘¦))
209 simpl 482 . . . . . . . . . . 11 ((𝑠 = 0 ∧ 𝑑 = 𝑦) β†’ 𝑠 = 0)
210209, 38eqbrtrdi 5177 . . . . . . . . . 10 ((𝑠 = 0 ∧ 𝑑 = 𝑦) β†’ 𝑠 ≀ (1 / 2))
211210iftrued 4528 . . . . . . . . 9 ((𝑠 = 0 ∧ 𝑑 = 𝑦) β†’ if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))))) = (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))))
212 simpr 484 . . . . . . . . . . . 12 ((𝑠 = 0 ∧ 𝑑 = 𝑦) β†’ 𝑑 = 𝑦)
213212oveq2d 7417 . . . . . . . . . . 11 ((𝑠 = 0 ∧ 𝑑 = 𝑦) β†’ (1 βˆ’ 𝑑) = (1 βˆ’ 𝑦))
214209oveq2d 7417 . . . . . . . . . . . 12 ((𝑠 = 0 ∧ 𝑑 = 𝑦) β†’ (2 Β· 𝑠) = (2 Β· 0))
215 2t0e0 12377 . . . . . . . . . . . 12 (2 Β· 0) = 0
216214, 215eqtrdi 2780 . . . . . . . . . . 11 ((𝑠 = 0 ∧ 𝑑 = 𝑦) β†’ (2 Β· 𝑠) = 0)
217213, 216oveq12d 7419 . . . . . . . . . 10 ((𝑠 = 0 ∧ 𝑑 = 𝑦) β†’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠)) = ((1 βˆ’ 𝑦) Β· 0))
218217oveq2d 7417 . . . . . . . . 9 ((𝑠 = 0 ∧ 𝑑 = 𝑦) β†’ (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))) = (1 βˆ’ ((1 βˆ’ 𝑦) Β· 0)))
219211, 218eqtrd 2764 . . . . . . . 8 ((𝑠 = 0 ∧ 𝑑 = 𝑦) β†’ if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))))) = (1 βˆ’ ((1 βˆ’ 𝑦) Β· 0)))
220219fveq2d 6885 . . . . . . 7 ((𝑠 = 0 ∧ 𝑑 = 𝑦) β†’ (πΉβ€˜if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))))) = (πΉβ€˜(1 βˆ’ ((1 βˆ’ 𝑦) Β· 0))))
221 fvex 6894 . . . . . . 7 (πΉβ€˜(1 βˆ’ ((1 βˆ’ 𝑦) Β· 0))) ∈ V
222220, 30, 221ovmpoa 7555 . . . . . 6 ((0 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) β†’ (0𝐻𝑦) = (πΉβ€˜(1 βˆ’ ((1 βˆ’ 𝑦) Β· 0))))
223102, 222mpan 687 . . . . 5 (𝑦 ∈ (0[,]1) β†’ (0𝐻𝑦) = (πΉβ€˜(1 βˆ’ ((1 βˆ’ 𝑦) Β· 0))))
224 subcl 11455 . . . . . . . . . 10 ((1 ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ (1 βˆ’ 𝑦) ∈ β„‚)
225150, 169, 224sylancr 586 . . . . . . . . 9 (𝑦 ∈ (0[,]1) β†’ (1 βˆ’ 𝑦) ∈ β„‚)
226225mul01d 11409 . . . . . . . 8 (𝑦 ∈ (0[,]1) β†’ ((1 βˆ’ 𝑦) Β· 0) = 0)
227226oveq2d 7417 . . . . . . 7 (𝑦 ∈ (0[,]1) β†’ (1 βˆ’ ((1 βˆ’ 𝑦) Β· 0)) = (1 βˆ’ 0))
228227, 54eqtrdi 2780 . . . . . 6 (𝑦 ∈ (0[,]1) β†’ (1 βˆ’ ((1 βˆ’ 𝑦) Β· 0)) = 1)
229228fveq2d 6885 . . . . 5 (𝑦 ∈ (0[,]1) β†’ (πΉβ€˜(1 βˆ’ ((1 βˆ’ 𝑦) Β· 0))) = (πΉβ€˜1))
230223, 229eqtrd 2764 . . . 4 (𝑦 ∈ (0[,]1) β†’ (0𝐻𝑦) = (πΉβ€˜1))
2318, 6pco0 24862 . . . . 5 (𝐹 ∈ (II Cn 𝐽) β†’ ((𝐺(*π‘β€˜π½)𝐹)β€˜0) = (πΊβ€˜0))
232 oveq2 7409 . . . . . . . . 9 (π‘₯ = 0 β†’ (1 βˆ’ π‘₯) = (1 βˆ’ 0))
233232, 54eqtrdi 2780 . . . . . . . 8 (π‘₯ = 0 β†’ (1 βˆ’ π‘₯) = 1)
234233fveq2d 6885 . . . . . . 7 (π‘₯ = 0 β†’ (πΉβ€˜(1 βˆ’ π‘₯)) = (πΉβ€˜1))
235234, 1, 204fvmpt 6988 . . . . . 6 (0 ∈ (0[,]1) β†’ (πΊβ€˜0) = (πΉβ€˜1))
236102, 235ax-mp 5 . . . . 5 (πΊβ€˜0) = (πΉβ€˜1)
237231, 236eqtr2di 2781 . . . 4 (𝐹 ∈ (II Cn 𝐽) β†’ (πΉβ€˜1) = ((𝐺(*π‘β€˜π½)𝐹)β€˜0))
238230, 237sylan9eqr 2786 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (0𝐻𝑦) = ((𝐺(*π‘β€˜π½)𝐹)β€˜0))
23937, 39ltnlei 11331 . . . . . . . . . . . 12 ((1 / 2) < 1 ↔ Β¬ 1 ≀ (1 / 2))
24040, 239mpbi 229 . . . . . . . . . . 11 Β¬ 1 ≀ (1 / 2)
241 simpl 482 . . . . . . . . . . . 12 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ 𝑠 = 1)
242241breq1d 5148 . . . . . . . . . . 11 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ (𝑠 ≀ (1 / 2) ↔ 1 ≀ (1 / 2)))
243240, 242mtbiri 327 . . . . . . . . . 10 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ Β¬ 𝑠 ≀ (1 / 2))
244243iffalsed 4531 . . . . . . . . 9 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))))) = (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))))
245 simpr 484 . . . . . . . . . . . 12 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ 𝑑 = 𝑦)
246245oveq2d 7417 . . . . . . . . . . 11 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ (1 βˆ’ 𝑑) = (1 βˆ’ 𝑦))
247241oveq2d 7417 . . . . . . . . . . . . . . . 16 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ (2 Β· 𝑠) = (2 Β· 1))
248 2t1e2 12371 . . . . . . . . . . . . . . . 16 (2 Β· 1) = 2
249247, 248eqtrdi 2780 . . . . . . . . . . . . . . 15 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ (2 Β· 𝑠) = 2)
250249oveq1d 7416 . . . . . . . . . . . . . 14 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ ((2 Β· 𝑠) βˆ’ 1) = (2 βˆ’ 1))
251 2m1e1 12334 . . . . . . . . . . . . . 14 (2 βˆ’ 1) = 1
252250, 251eqtrdi 2780 . . . . . . . . . . . . 13 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ ((2 Β· 𝑠) βˆ’ 1) = 1)
253252oveq2d 7417 . . . . . . . . . . . 12 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)) = (1 βˆ’ 1))
254253, 11eqtrdi 2780 . . . . . . . . . . 11 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)) = 0)
255246, 254oveq12d 7419 . . . . . . . . . 10 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))) = ((1 βˆ’ 𝑦) Β· 0))
256255oveq2d 7417 . . . . . . . . 9 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))) = (1 βˆ’ ((1 βˆ’ 𝑦) Β· 0)))
257244, 256eqtrd 2764 . . . . . . . 8 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1))))) = (1 βˆ’ ((1 βˆ’ 𝑦) Β· 0)))
258257fveq2d 6885 . . . . . . 7 ((𝑠 = 1 ∧ 𝑑 = 𝑦) β†’ (πΉβ€˜if(𝑠 ≀ (1 / 2), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (2 Β· 𝑠))), (1 βˆ’ ((1 βˆ’ 𝑑) Β· (1 βˆ’ ((2 Β· 𝑠) βˆ’ 1)))))) = (πΉβ€˜(1 βˆ’ ((1 βˆ’ 𝑦) Β· 0))))
259258, 30, 221ovmpoa 7555 . . . . . 6 ((1 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) β†’ (1𝐻𝑦) = (πΉβ€˜(1 βˆ’ ((1 βˆ’ 𝑦) Β· 0))))
2609, 259mpan 687 . . . . 5 (𝑦 ∈ (0[,]1) β†’ (1𝐻𝑦) = (πΉβ€˜(1 βˆ’ ((1 βˆ’ 𝑦) Β· 0))))
261260, 229eqtrd 2764 . . . 4 (𝑦 ∈ (0[,]1) β†’ (1𝐻𝑦) = (πΉβ€˜1))
2628, 6pco1 24863 . . . . 5 (𝐹 ∈ (II Cn 𝐽) β†’ ((𝐺(*π‘β€˜π½)𝐹)β€˜1) = (πΉβ€˜1))
263262eqcomd 2730 . . . 4 (𝐹 ∈ (II Cn 𝐽) β†’ (πΉβ€˜1) = ((𝐺(*π‘β€˜π½)𝐹)β€˜1))
264261, 263sylan9eqr 2786 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (0[,]1)) β†’ (1𝐻𝑦) = ((𝐺(*π‘β€˜π½)𝐹)β€˜1))
26517, 29, 100, 167, 208, 238, 264isphtpy2d 24834 . 2 (𝐹 ∈ (II Cn 𝐽) β†’ 𝐻 ∈ ((𝐺(*π‘β€˜π½)𝐹)(PHtpyβ€˜π½)𝑃))
266265ne0d 4327 . . 3 (𝐹 ∈ (II Cn 𝐽) β†’ ((𝐺(*π‘β€˜π½)𝐹)(PHtpyβ€˜π½)𝑃) β‰  βˆ…)
267 isphtpc 24841 . . 3 ((𝐺(*π‘β€˜π½)𝐹)( ≃phβ€˜π½)𝑃 ↔ ((𝐺(*π‘β€˜π½)𝐹) ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (II Cn 𝐽) ∧ ((𝐺(*π‘β€˜π½)𝐹)(PHtpyβ€˜π½)𝑃) β‰  βˆ…))
26817, 29, 266, 267syl3anbrc 1340 . 2 (𝐹 ∈ (II Cn 𝐽) β†’ (𝐺(*π‘β€˜π½)𝐹)( ≃phβ€˜π½)𝑃)
269265, 268jca 511 1 (𝐹 ∈ (II Cn 𝐽) β†’ (𝐻 ∈ ((𝐺(*π‘β€˜π½)𝐹)(PHtpyβ€˜π½)𝑃) ∧ (𝐺(*π‘β€˜π½)𝐹)( ≃phβ€˜π½)𝑃))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   βŠ† wss 3940  βˆ…c0 4314  ifcif 4520  {csn 4620  βˆͺ cuni 4899   class class class wbr 5138   ↦ cmpt 5221   Γ— cxp 5664  ran crn 5667  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401   ∈ cmpo 7403  β„‚cc 11103  β„cr 11104  0cc0 11105  1c1 11106   Β· cmul 11110   < clt 11244   ≀ cle 11245   βˆ’ cmin 11440   / cdiv 11867  2c2 12263  (,)cioo 13320  [,]cicc 13323   β†Ύt crest 17364  topGenctg 17381  Topctop 22716  TopOnctopon 22733   Cn ccn 23049   Γ—t ctx 23385  IIcii 24716  PHtpycphtpy 24815   ≃phcphtpc 24816  *𝑝cpco 24848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8698  df-map 8817  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-starv 17210  df-sca 17211  df-vsca 17212  df-ip 17213  df-tset 17214  df-ple 17215  df-ds 17217  df-unif 17218  df-hom 17219  df-cco 17220  df-rest 17366  df-topn 17367  df-0g 17385  df-gsum 17386  df-topgen 17387  df-pt 17388  df-prds 17391  df-xrs 17446  df-qtop 17451  df-imas 17452  df-xps 17454  df-mre 17528  df-mrc 17529  df-acs 17531  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-submnd 18703  df-mulg 18985  df-cntz 19222  df-cmn 19691  df-psmet 21219  df-xmet 21220  df-met 21221  df-bl 21222  df-mopn 21223  df-cnfld 21228  df-top 22717  df-topon 22734  df-topsp 22756  df-bases 22770  df-cld 22844  df-cn 23052  df-cnp 23053  df-tx 23387  df-hmeo 23580  df-xms 24147  df-ms 24148  df-tms 24149  df-ii 24718  df-htpy 24817  df-phtpy 24818  df-phtpc 24839  df-pco 24853
This theorem is referenced by:  pcorev  24875
  Copyright terms: Public domain W3C validator