MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem5 Structured version   Visualization version   GIF version

Theorem divalglem5 16308
Description: Lemma for divalg 16314. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
divalglem5.5 𝑅 = inf(𝑆, ℝ, < )
Assertion
Ref Expression
divalglem5 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hints:   𝑅(𝑟)   𝑆(𝑟)

Proof of Theorem divalglem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divalglem5.5 . . . . . 6 𝑅 = inf(𝑆, ℝ, < )
2 divalglem0.1 . . . . . . 7 𝑁 ∈ ℤ
3 divalglem0.2 . . . . . . 7 𝐷 ∈ ℤ
4 divalglem1.3 . . . . . . 7 𝐷 ≠ 0
5 divalglem2.4 . . . . . . 7 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
62, 3, 4, 5divalglem2 16306 . . . . . 6 inf(𝑆, ℝ, < ) ∈ 𝑆
71, 6eqeltri 2824 . . . . 5 𝑅𝑆
8 oveq2 7357 . . . . . . 7 (𝑥 = 𝑅 → (𝑁𝑥) = (𝑁𝑅))
98breq2d 5104 . . . . . 6 (𝑥 = 𝑅 → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁𝑅)))
10 oveq2 7357 . . . . . . . . 9 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
1110breq2d 5104 . . . . . . . 8 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
1211cbvrabv 3405 . . . . . . 7 {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)} = {𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)}
135, 12eqtri 2752 . . . . . 6 𝑆 = {𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)}
149, 13elrab2 3651 . . . . 5 (𝑅𝑆 ↔ (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)))
157, 14mpbi 230 . . . 4 (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅))
1615simpli 483 . . 3 𝑅 ∈ ℕ0
1716nn0ge0i 12411 . 2 0 ≤ 𝑅
18 nnabscl 15233 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
193, 4, 18mp2an 692 . . . . . 6 (abs‘𝐷) ∈ ℕ
2019nngt0i 12167 . . . . 5 0 < (abs‘𝐷)
21 0re 11117 . . . . . 6 0 ∈ ℝ
22 zcn 12476 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
233, 22ax-mp 5 . . . . . . 7 𝐷 ∈ ℂ
2423abscli 15303 . . . . . 6 (abs‘𝐷) ∈ ℝ
2521, 24ltnlei 11237 . . . . 5 (0 < (abs‘𝐷) ↔ ¬ (abs‘𝐷) ≤ 0)
2620, 25mpbi 230 . . . 4 ¬ (abs‘𝐷) ≤ 0
275ssrab3 4033 . . . . . . . 8 𝑆 ⊆ ℕ0
28 nn0uz 12777 . . . . . . . 8 0 = (ℤ‘0)
2927, 28sseqtri 3984 . . . . . . 7 𝑆 ⊆ (ℤ‘0)
30 nn0abscl 15219 . . . . . . . . . 10 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
313, 30ax-mp 5 . . . . . . . . 9 (abs‘𝐷) ∈ ℕ0
32 nn0sub2 12537 . . . . . . . . 9 (((abs‘𝐷) ∈ ℕ0𝑅 ∈ ℕ0 ∧ (abs‘𝐷) ≤ 𝑅) → (𝑅 − (abs‘𝐷)) ∈ ℕ0)
3331, 16, 32mp3an12 1453 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅 → (𝑅 − (abs‘𝐷)) ∈ ℕ0)
3415a1i 11 . . . . . . . . 9 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)))
35 nn0z 12496 . . . . . . . . . . 11 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
36 1z 12505 . . . . . . . . . . . . 13 1 ∈ ℤ
372, 3divalglem0 16304 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷))))))
3836, 37mpan2 691 . . . . . . . . . . . 12 (𝑅 ∈ ℤ → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷))))))
3924recni 11129 . . . . . . . . . . . . . . . 16 (abs‘𝐷) ∈ ℂ
4039mullidi 11120 . . . . . . . . . . . . . . 15 (1 · (abs‘𝐷)) = (abs‘𝐷)
4140oveq2i 7360 . . . . . . . . . . . . . 14 (𝑅 − (1 · (abs‘𝐷))) = (𝑅 − (abs‘𝐷))
4241oveq2i 7360 . . . . . . . . . . . . 13 (𝑁 − (𝑅 − (1 · (abs‘𝐷)))) = (𝑁 − (𝑅 − (abs‘𝐷)))
4342breq2i 5100 . . . . . . . . . . . 12 (𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷)))) ↔ 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
4438, 43imbitrdi 251 . . . . . . . . . . 11 (𝑅 ∈ ℤ → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
4535, 44syl 17 . . . . . . . . . 10 (𝑅 ∈ ℕ0 → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
4645imp 406 . . . . . . . . 9 ((𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
4734, 46syl 17 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
48 oveq2 7357 . . . . . . . . . 10 (𝑥 = (𝑅 − (abs‘𝐷)) → (𝑁𝑥) = (𝑁 − (𝑅 − (abs‘𝐷))))
4948breq2d 5104 . . . . . . . . 9 (𝑥 = (𝑅 − (abs‘𝐷)) → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
5049, 13elrab2 3651 . . . . . . . 8 ((𝑅 − (abs‘𝐷)) ∈ 𝑆 ↔ ((𝑅 − (abs‘𝐷)) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
5133, 47, 50sylanbrc 583 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅 → (𝑅 − (abs‘𝐷)) ∈ 𝑆)
52 infssuzle 12832 . . . . . . 7 ((𝑆 ⊆ (ℤ‘0) ∧ (𝑅 − (abs‘𝐷)) ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ (𝑅 − (abs‘𝐷)))
5329, 51, 52sylancr 587 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → inf(𝑆, ℝ, < ) ≤ (𝑅 − (abs‘𝐷)))
541, 53eqbrtrid 5127 . . . . 5 ((abs‘𝐷) ≤ 𝑅𝑅 ≤ (𝑅 − (abs‘𝐷)))
5534simpld 494 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℕ0)
5655nn0red 12446 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℝ)
57 lesub 11599 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
5824, 57mp3an3 1452 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
5956, 56, 58syl2anc 584 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
6056recnd 11143 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℂ)
6160subidd 11463 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅 → (𝑅𝑅) = 0)
6261breq2d 5104 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → ((abs‘𝐷) ≤ (𝑅𝑅) ↔ (abs‘𝐷) ≤ 0))
6359, 62bitrd 279 . . . . 5 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ 0))
6454, 63mpbid 232 . . . 4 ((abs‘𝐷) ≤ 𝑅 → (abs‘𝐷) ≤ 0)
6526, 64mto 197 . . 3 ¬ (abs‘𝐷) ≤ 𝑅
6616nn0rei 12395 . . . 4 𝑅 ∈ ℝ
6766, 24ltnlei 11237 . . 3 (𝑅 < (abs‘𝐷) ↔ ¬ (abs‘𝐷) ≤ 𝑅)
6865, 67mpbir 231 . 2 𝑅 < (abs‘𝐷)
6917, 68pm3.2i 470 1 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3394  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349  infcinf 9331  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014   < clt 11149  cle 11150  cmin 11347  cn 12128  0cn0 12384  cz 12471  cuz 12735  abscabs 15141  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164
This theorem is referenced by:  divalglem9  16312
  Copyright terms: Public domain W3C validator