MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem5 Structured version   Visualization version   GIF version

Theorem divalglem5 16421
Description: Lemma for divalg 16427. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
divalglem5.5 𝑅 = inf(𝑆, ℝ, < )
Assertion
Ref Expression
divalglem5 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hints:   𝑅(𝑟)   𝑆(𝑟)

Proof of Theorem divalglem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divalglem5.5 . . . . . 6 𝑅 = inf(𝑆, ℝ, < )
2 divalglem0.1 . . . . . . 7 𝑁 ∈ ℤ
3 divalglem0.2 . . . . . . 7 𝐷 ∈ ℤ
4 divalglem1.3 . . . . . . 7 𝐷 ≠ 0
5 divalglem2.4 . . . . . . 7 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
62, 3, 4, 5divalglem2 16419 . . . . . 6 inf(𝑆, ℝ, < ) ∈ 𝑆
71, 6eqeltri 2831 . . . . 5 𝑅𝑆
8 oveq2 7418 . . . . . . 7 (𝑥 = 𝑅 → (𝑁𝑥) = (𝑁𝑅))
98breq2d 5136 . . . . . 6 (𝑥 = 𝑅 → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁𝑅)))
10 oveq2 7418 . . . . . . . . 9 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
1110breq2d 5136 . . . . . . . 8 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
1211cbvrabv 3431 . . . . . . 7 {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)} = {𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)}
135, 12eqtri 2759 . . . . . 6 𝑆 = {𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)}
149, 13elrab2 3679 . . . . 5 (𝑅𝑆 ↔ (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)))
157, 14mpbi 230 . . . 4 (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅))
1615simpli 483 . . 3 𝑅 ∈ ℕ0
1716nn0ge0i 12533 . 2 0 ≤ 𝑅
18 nnabscl 15349 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
193, 4, 18mp2an 692 . . . . . 6 (abs‘𝐷) ∈ ℕ
2019nngt0i 12284 . . . . 5 0 < (abs‘𝐷)
21 0re 11242 . . . . . 6 0 ∈ ℝ
22 zcn 12598 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
233, 22ax-mp 5 . . . . . . 7 𝐷 ∈ ℂ
2423abscli 15419 . . . . . 6 (abs‘𝐷) ∈ ℝ
2521, 24ltnlei 11361 . . . . 5 (0 < (abs‘𝐷) ↔ ¬ (abs‘𝐷) ≤ 0)
2620, 25mpbi 230 . . . 4 ¬ (abs‘𝐷) ≤ 0
275ssrab3 4062 . . . . . . . 8 𝑆 ⊆ ℕ0
28 nn0uz 12899 . . . . . . . 8 0 = (ℤ‘0)
2927, 28sseqtri 4012 . . . . . . 7 𝑆 ⊆ (ℤ‘0)
30 nn0abscl 15336 . . . . . . . . . 10 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
313, 30ax-mp 5 . . . . . . . . 9 (abs‘𝐷) ∈ ℕ0
32 nn0sub2 12659 . . . . . . . . 9 (((abs‘𝐷) ∈ ℕ0𝑅 ∈ ℕ0 ∧ (abs‘𝐷) ≤ 𝑅) → (𝑅 − (abs‘𝐷)) ∈ ℕ0)
3331, 16, 32mp3an12 1453 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅 → (𝑅 − (abs‘𝐷)) ∈ ℕ0)
3415a1i 11 . . . . . . . . 9 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)))
35 nn0z 12618 . . . . . . . . . . 11 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
36 1z 12627 . . . . . . . . . . . . 13 1 ∈ ℤ
372, 3divalglem0 16417 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷))))))
3836, 37mpan2 691 . . . . . . . . . . . 12 (𝑅 ∈ ℤ → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷))))))
3924recni 11254 . . . . . . . . . . . . . . . 16 (abs‘𝐷) ∈ ℂ
4039mullidi 11245 . . . . . . . . . . . . . . 15 (1 · (abs‘𝐷)) = (abs‘𝐷)
4140oveq2i 7421 . . . . . . . . . . . . . 14 (𝑅 − (1 · (abs‘𝐷))) = (𝑅 − (abs‘𝐷))
4241oveq2i 7421 . . . . . . . . . . . . 13 (𝑁 − (𝑅 − (1 · (abs‘𝐷)))) = (𝑁 − (𝑅 − (abs‘𝐷)))
4342breq2i 5132 . . . . . . . . . . . 12 (𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷)))) ↔ 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
4438, 43imbitrdi 251 . . . . . . . . . . 11 (𝑅 ∈ ℤ → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
4535, 44syl 17 . . . . . . . . . 10 (𝑅 ∈ ℕ0 → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
4645imp 406 . . . . . . . . 9 ((𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
4734, 46syl 17 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
48 oveq2 7418 . . . . . . . . . 10 (𝑥 = (𝑅 − (abs‘𝐷)) → (𝑁𝑥) = (𝑁 − (𝑅 − (abs‘𝐷))))
4948breq2d 5136 . . . . . . . . 9 (𝑥 = (𝑅 − (abs‘𝐷)) → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
5049, 13elrab2 3679 . . . . . . . 8 ((𝑅 − (abs‘𝐷)) ∈ 𝑆 ↔ ((𝑅 − (abs‘𝐷)) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
5133, 47, 50sylanbrc 583 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅 → (𝑅 − (abs‘𝐷)) ∈ 𝑆)
52 infssuzle 12952 . . . . . . 7 ((𝑆 ⊆ (ℤ‘0) ∧ (𝑅 − (abs‘𝐷)) ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ (𝑅 − (abs‘𝐷)))
5329, 51, 52sylancr 587 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → inf(𝑆, ℝ, < ) ≤ (𝑅 − (abs‘𝐷)))
541, 53eqbrtrid 5159 . . . . 5 ((abs‘𝐷) ≤ 𝑅𝑅 ≤ (𝑅 − (abs‘𝐷)))
5534simpld 494 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℕ0)
5655nn0red 12568 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℝ)
57 lesub 11721 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
5824, 57mp3an3 1452 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
5956, 56, 58syl2anc 584 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
6056recnd 11268 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℂ)
6160subidd 11587 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅 → (𝑅𝑅) = 0)
6261breq2d 5136 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → ((abs‘𝐷) ≤ (𝑅𝑅) ↔ (abs‘𝐷) ≤ 0))
6359, 62bitrd 279 . . . . 5 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ 0))
6454, 63mpbid 232 . . . 4 ((abs‘𝐷) ≤ 𝑅 → (abs‘𝐷) ≤ 0)
6526, 64mto 197 . . 3 ¬ (abs‘𝐷) ≤ 𝑅
6616nn0rei 12517 . . . 4 𝑅 ∈ ℝ
6766, 24ltnlei 11361 . . 3 (𝑅 < (abs‘𝐷) ↔ ¬ (abs‘𝐷) ≤ 𝑅)
6865, 67mpbir 231 . 2 𝑅 < (abs‘𝐷)
6917, 68pm3.2i 470 1 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  {crab 3420  wss 3931   class class class wbr 5124  cfv 6536  (class class class)co 7410  infcinf 9458  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139   < clt 11274  cle 11275  cmin 11471  cn 12245  0cn0 12506  cz 12593  cuz 12857  abscabs 15258  cdvds 16277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278
This theorem is referenced by:  divalglem9  16425
  Copyright terms: Public domain W3C validator