MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem5 Structured version   Visualization version   GIF version

Theorem divalglem5 15842
Description: Lemma for divalg 15848. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem0.1 𝑁 ∈ ℤ
divalglem0.2 𝐷 ∈ ℤ
divalglem1.3 𝐷 ≠ 0
divalglem2.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
divalglem5.5 𝑅 = inf(𝑆, ℝ, < )
Assertion
Ref Expression
divalglem5 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
Distinct variable groups:   𝐷,𝑟   𝑁,𝑟
Allowed substitution hints:   𝑅(𝑟)   𝑆(𝑟)

Proof of Theorem divalglem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divalglem5.5 . . . . . 6 𝑅 = inf(𝑆, ℝ, < )
2 divalglem0.1 . . . . . . 7 𝑁 ∈ ℤ
3 divalglem0.2 . . . . . . 7 𝐷 ∈ ℤ
4 divalglem1.3 . . . . . . 7 𝐷 ≠ 0
5 divalglem2.4 . . . . . . 7 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
62, 3, 4, 5divalglem2 15840 . . . . . 6 inf(𝑆, ℝ, < ) ∈ 𝑆
71, 6eqeltri 2829 . . . . 5 𝑅𝑆
8 oveq2 7178 . . . . . . 7 (𝑥 = 𝑅 → (𝑁𝑥) = (𝑁𝑅))
98breq2d 5042 . . . . . 6 (𝑥 = 𝑅 → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁𝑅)))
10 oveq2 7178 . . . . . . . . 9 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
1110breq2d 5042 . . . . . . . 8 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
1211cbvrabv 3393 . . . . . . 7 {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)} = {𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)}
135, 12eqtri 2761 . . . . . 6 𝑆 = {𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)}
149, 13elrab2 3591 . . . . 5 (𝑅𝑆 ↔ (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)))
157, 14mpbi 233 . . . 4 (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅))
1615simpli 487 . . 3 𝑅 ∈ ℕ0
1716nn0ge0i 12003 . 2 0 ≤ 𝑅
18 nnabscl 14775 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
193, 4, 18mp2an 692 . . . . . 6 (abs‘𝐷) ∈ ℕ
2019nngt0i 11755 . . . . 5 0 < (abs‘𝐷)
21 0re 10721 . . . . . 6 0 ∈ ℝ
22 zcn 12067 . . . . . . . 8 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
233, 22ax-mp 5 . . . . . . 7 𝐷 ∈ ℂ
2423abscli 14845 . . . . . 6 (abs‘𝐷) ∈ ℝ
2521, 24ltnlei 10839 . . . . 5 (0 < (abs‘𝐷) ↔ ¬ (abs‘𝐷) ≤ 0)
2620, 25mpbi 233 . . . 4 ¬ (abs‘𝐷) ≤ 0
275ssrab3 3971 . . . . . . . 8 𝑆 ⊆ ℕ0
28 nn0uz 12362 . . . . . . . 8 0 = (ℤ‘0)
2927, 28sseqtri 3913 . . . . . . 7 𝑆 ⊆ (ℤ‘0)
30 nn0abscl 14762 . . . . . . . . . 10 (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0)
313, 30ax-mp 5 . . . . . . . . 9 (abs‘𝐷) ∈ ℕ0
32 nn0sub2 12124 . . . . . . . . 9 (((abs‘𝐷) ∈ ℕ0𝑅 ∈ ℕ0 ∧ (abs‘𝐷) ≤ 𝑅) → (𝑅 − (abs‘𝐷)) ∈ ℕ0)
3331, 16, 32mp3an12 1452 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅 → (𝑅 − (abs‘𝐷)) ∈ ℕ0)
3415a1i 11 . . . . . . . . 9 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)))
35 nn0z 12086 . . . . . . . . . . 11 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
36 1z 12093 . . . . . . . . . . . . 13 1 ∈ ℤ
372, 3divalglem0 15838 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷))))))
3836, 37mpan2 691 . . . . . . . . . . . 12 (𝑅 ∈ ℤ → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷))))))
3924recni 10733 . . . . . . . . . . . . . . . 16 (abs‘𝐷) ∈ ℂ
4039mulid2i 10724 . . . . . . . . . . . . . . 15 (1 · (abs‘𝐷)) = (abs‘𝐷)
4140oveq2i 7181 . . . . . . . . . . . . . 14 (𝑅 − (1 · (abs‘𝐷))) = (𝑅 − (abs‘𝐷))
4241oveq2i 7181 . . . . . . . . . . . . 13 (𝑁 − (𝑅 − (1 · (abs‘𝐷)))) = (𝑁 − (𝑅 − (abs‘𝐷)))
4342breq2i 5038 . . . . . . . . . . . 12 (𝐷 ∥ (𝑁 − (𝑅 − (1 · (abs‘𝐷)))) ↔ 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
4438, 43syl6ib 254 . . . . . . . . . . 11 (𝑅 ∈ ℤ → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
4535, 44syl 17 . . . . . . . . . 10 (𝑅 ∈ ℕ0 → (𝐷 ∥ (𝑁𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
4645imp 410 . . . . . . . . 9 ((𝑅 ∈ ℕ0𝐷 ∥ (𝑁𝑅)) → 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
4734, 46syl 17 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷))))
48 oveq2 7178 . . . . . . . . . 10 (𝑥 = (𝑅 − (abs‘𝐷)) → (𝑁𝑥) = (𝑁 − (𝑅 − (abs‘𝐷))))
4948breq2d 5042 . . . . . . . . 9 (𝑥 = (𝑅 − (abs‘𝐷)) → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
5049, 13elrab2 3591 . . . . . . . 8 ((𝑅 − (abs‘𝐷)) ∈ 𝑆 ↔ ((𝑅 − (abs‘𝐷)) ∈ ℕ0𝐷 ∥ (𝑁 − (𝑅 − (abs‘𝐷)))))
5133, 47, 50sylanbrc 586 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅 → (𝑅 − (abs‘𝐷)) ∈ 𝑆)
52 infssuzle 12413 . . . . . . 7 ((𝑆 ⊆ (ℤ‘0) ∧ (𝑅 − (abs‘𝐷)) ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ (𝑅 − (abs‘𝐷)))
5329, 51, 52sylancr 590 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → inf(𝑆, ℝ, < ) ≤ (𝑅 − (abs‘𝐷)))
541, 53eqbrtrid 5065 . . . . 5 ((abs‘𝐷) ≤ 𝑅𝑅 ≤ (𝑅 − (abs‘𝐷)))
5534simpld 498 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℕ0)
5655nn0red 12037 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℝ)
57 lesub 11197 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ (abs‘𝐷) ∈ ℝ) → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
5824, 57mp3an3 1451 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
5956, 56, 58syl2anc 587 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ (𝑅𝑅)))
6056recnd 10747 . . . . . . . 8 ((abs‘𝐷) ≤ 𝑅𝑅 ∈ ℂ)
6160subidd 11063 . . . . . . 7 ((abs‘𝐷) ≤ 𝑅 → (𝑅𝑅) = 0)
6261breq2d 5042 . . . . . 6 ((abs‘𝐷) ≤ 𝑅 → ((abs‘𝐷) ≤ (𝑅𝑅) ↔ (abs‘𝐷) ≤ 0))
6359, 62bitrd 282 . . . . 5 ((abs‘𝐷) ≤ 𝑅 → (𝑅 ≤ (𝑅 − (abs‘𝐷)) ↔ (abs‘𝐷) ≤ 0))
6454, 63mpbid 235 . . . 4 ((abs‘𝐷) ≤ 𝑅 → (abs‘𝐷) ≤ 0)
6526, 64mto 200 . . 3 ¬ (abs‘𝐷) ≤ 𝑅
6616nn0rei 11987 . . . 4 𝑅 ∈ ℝ
6766, 24ltnlei 10839 . . 3 (𝑅 < (abs‘𝐷) ↔ ¬ (abs‘𝐷) ≤ 𝑅)
6865, 67mpbir 234 . 2 𝑅 < (abs‘𝐷)
6917, 68pm3.2i 474 1 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2934  {crab 3057  wss 3843   class class class wbr 5030  cfv 6339  (class class class)co 7170  infcinf 8978  cc 10613  cr 10614  0cc0 10615  1c1 10616   · cmul 10620   < clt 10753  cle 10754  cmin 10948  cn 11716  0cn0 11976  cz 12062  cuz 12324  abscabs 14683  cdvds 15699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-seq 13461  df-exp 13522  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-dvds 15700
This theorem is referenced by:  divalglem9  15846
  Copyright terms: Public domain W3C validator