MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pco1 Structured version   Visualization version   GIF version

Theorem pco1 24945
Description: The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pco1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))

Proof of Theorem pco1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2pcoval 24941 . . 3 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
43fveq1d 6832 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1))
5 1elunit 13374 . . 3 1 ∈ (0[,]1)
6 halflt1 12347 . . . . . . . 8 (1 / 2) < 1
7 halfre 12343 . . . . . . . . 9 (1 / 2) ∈ ℝ
8 1re 11121 . . . . . . . . 9 1 ∈ ℝ
97, 8ltnlei 11243 . . . . . . . 8 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
106, 9mpbi 230 . . . . . . 7 ¬ 1 ≤ (1 / 2)
11 breq1 5098 . . . . . . 7 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
1210, 11mtbiri 327 . . . . . 6 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
1312iffalsed 4487 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘((2 · 𝑥) − 1)))
14 oveq2 7362 . . . . . . . . 9 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
15 2t1e2 12292 . . . . . . . . 9 (2 · 1) = 2
1614, 15eqtrdi 2784 . . . . . . . 8 (𝑥 = 1 → (2 · 𝑥) = 2)
1716oveq1d 7369 . . . . . . 7 (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1))
18 2m1e1 12255 . . . . . . 7 (2 − 1) = 1
1917, 18eqtrdi 2784 . . . . . 6 (𝑥 = 1 → ((2 · 𝑥) − 1) = 1)
2019fveq2d 6834 . . . . 5 (𝑥 = 1 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘1))
2113, 20eqtrd 2768 . . . 4 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘1))
22 eqid 2733 . . . 4 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
23 fvex 6843 . . . 4 (𝐺‘1) ∈ V
2421, 22, 23fvmpt 6937 . . 3 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1))
255, 24ax-mp 5 . 2 ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1)
264, 25eqtrdi 2784 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  ifcif 4476   class class class wbr 5095  cmpt 5176  cfv 6488  (class class class)co 7354  0cc0 11015  1c1 11016   · cmul 11020   < clt 11155  cle 11156  cmin 11353   / cdiv 11783  2c2 12189  [,]cicc 13252   Cn ccn 23142  IIcii 24798  *𝑝cpco 24930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-icc 13256  df-top 22812  df-topon 22829  df-cn 23145  df-pco 24935
This theorem is referenced by:  pcohtpylem  24949  pcorevlem  24956  pcophtb  24959  om1addcl  24963  pi1xfrf  24983  pi1xfr  24985  pi1xfrcnvlem  24986  pi1coghm  24991  connpconn  35302  sconnpht2  35305  cvmlift3lem6  35391
  Copyright terms: Public domain W3C validator