MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pco1 Structured version   Visualization version   GIF version

Theorem pco1 25061
Description: The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pco1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))

Proof of Theorem pco1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2pcoval 25057 . . 3 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
43fveq1d 6908 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1))
5 1elunit 13506 . . 3 1 ∈ (0[,]1)
6 halflt1 12481 . . . . . . . 8 (1 / 2) < 1
7 halfre 12477 . . . . . . . . 9 (1 / 2) ∈ ℝ
8 1re 11258 . . . . . . . . 9 1 ∈ ℝ
97, 8ltnlei 11379 . . . . . . . 8 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
106, 9mpbi 230 . . . . . . 7 ¬ 1 ≤ (1 / 2)
11 breq1 5150 . . . . . . 7 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
1210, 11mtbiri 327 . . . . . 6 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
1312iffalsed 4541 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘((2 · 𝑥) − 1)))
14 oveq2 7438 . . . . . . . . 9 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
15 2t1e2 12426 . . . . . . . . 9 (2 · 1) = 2
1614, 15eqtrdi 2790 . . . . . . . 8 (𝑥 = 1 → (2 · 𝑥) = 2)
1716oveq1d 7445 . . . . . . 7 (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1))
18 2m1e1 12389 . . . . . . 7 (2 − 1) = 1
1917, 18eqtrdi 2790 . . . . . 6 (𝑥 = 1 → ((2 · 𝑥) − 1) = 1)
2019fveq2d 6910 . . . . 5 (𝑥 = 1 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘1))
2113, 20eqtrd 2774 . . . 4 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘1))
22 eqid 2734 . . . 4 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
23 fvex 6919 . . . 4 (𝐺‘1) ∈ V
2421, 22, 23fvmpt 7015 . . 3 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1))
255, 24ax-mp 5 . 2 ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1)
264, 25eqtrdi 2790 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1536  wcel 2105  ifcif 4530   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  2c2 12318  [,]cicc 13386   Cn ccn 23247  IIcii 24914  *𝑝cpco 25046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-2 12326  df-icc 13390  df-top 22915  df-topon 22932  df-cn 23250  df-pco 25051
This theorem is referenced by:  pcohtpylem  25065  pcorevlem  25072  pcophtb  25075  om1addcl  25079  pi1xfrf  25099  pi1xfr  25101  pi1xfrcnvlem  25102  pi1coghm  25107  connpconn  35219  sconnpht2  35222  cvmlift3lem6  35308
  Copyright terms: Public domain W3C validator