![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pco1 | Structured version Visualization version GIF version |
Description: The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pco1 | ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
3 | 1, 2 | pcoval 25057 | . . 3 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
4 | 3 | fveq1d 6908 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1)) |
5 | 1elunit 13506 | . . 3 ⊢ 1 ∈ (0[,]1) | |
6 | halflt1 12481 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
7 | halfre 12477 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
8 | 1re 11258 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
9 | 7, 8 | ltnlei 11379 | . . . . . . . 8 ⊢ ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2)) |
10 | 6, 9 | mpbi 230 | . . . . . . 7 ⊢ ¬ 1 ≤ (1 / 2) |
11 | breq1 5150 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2))) | |
12 | 10, 11 | mtbiri 327 | . . . . . 6 ⊢ (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2)) |
13 | 12 | iffalsed 4541 | . . . . 5 ⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘((2 · 𝑥) − 1))) |
14 | oveq2 7438 | . . . . . . . . 9 ⊢ (𝑥 = 1 → (2 · 𝑥) = (2 · 1)) | |
15 | 2t1e2 12426 | . . . . . . . . 9 ⊢ (2 · 1) = 2 | |
16 | 14, 15 | eqtrdi 2790 | . . . . . . . 8 ⊢ (𝑥 = 1 → (2 · 𝑥) = 2) |
17 | 16 | oveq1d 7445 | . . . . . . 7 ⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1)) |
18 | 2m1e1 12389 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
19 | 17, 18 | eqtrdi 2790 | . . . . . 6 ⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) = 1) |
20 | 19 | fveq2d 6910 | . . . . 5 ⊢ (𝑥 = 1 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘1)) |
21 | 13, 20 | eqtrd 2774 | . . . 4 ⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘1)) |
22 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) | |
23 | fvex 6919 | . . . 4 ⊢ (𝐺‘1) ∈ V | |
24 | 21, 22, 23 | fvmpt 7015 | . . 3 ⊢ (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1)) |
25 | 5, 24 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1) |
26 | 4, 25 | eqtrdi 2790 | 1 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1536 ∈ wcel 2105 ifcif 4530 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 0cc0 11152 1c1 11153 · cmul 11157 < clt 11292 ≤ cle 11293 − cmin 11489 / cdiv 11917 2c2 12318 [,]cicc 13386 Cn ccn 23247 IIcii 24914 *𝑝cpco 25046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-2 12326 df-icc 13390 df-top 22915 df-topon 22932 df-cn 23250 df-pco 25051 |
This theorem is referenced by: pcohtpylem 25065 pcorevlem 25072 pcophtb 25075 om1addcl 25079 pi1xfrf 25099 pi1xfr 25101 pi1xfrcnvlem 25102 pi1coghm 25107 connpconn 35219 sconnpht2 35222 cvmlift3lem6 35308 |
Copyright terms: Public domain | W3C validator |