| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pco1 | Structured version Visualization version GIF version | ||
| Description: The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| Ref | Expression |
|---|---|
| pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| Ref | Expression |
|---|---|
| pco1 | ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 2 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 3 | 1, 2 | pcoval 24939 | . . 3 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
| 4 | 3 | fveq1d 6824 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1)) |
| 5 | 1elunit 13370 | . . 3 ⊢ 1 ∈ (0[,]1) | |
| 6 | halflt1 12338 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
| 7 | halfre 12334 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
| 8 | 1re 11112 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 9 | 7, 8 | ltnlei 11234 | . . . . . . . 8 ⊢ ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2)) |
| 10 | 6, 9 | mpbi 230 | . . . . . . 7 ⊢ ¬ 1 ≤ (1 / 2) |
| 11 | breq1 5094 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2))) | |
| 12 | 10, 11 | mtbiri 327 | . . . . . 6 ⊢ (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2)) |
| 13 | 12 | iffalsed 4486 | . . . . 5 ⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘((2 · 𝑥) − 1))) |
| 14 | oveq2 7354 | . . . . . . . . 9 ⊢ (𝑥 = 1 → (2 · 𝑥) = (2 · 1)) | |
| 15 | 2t1e2 12283 | . . . . . . . . 9 ⊢ (2 · 1) = 2 | |
| 16 | 14, 15 | eqtrdi 2782 | . . . . . . . 8 ⊢ (𝑥 = 1 → (2 · 𝑥) = 2) |
| 17 | 16 | oveq1d 7361 | . . . . . . 7 ⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1)) |
| 18 | 2m1e1 12246 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
| 19 | 17, 18 | eqtrdi 2782 | . . . . . 6 ⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) = 1) |
| 20 | 19 | fveq2d 6826 | . . . . 5 ⊢ (𝑥 = 1 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘1)) |
| 21 | 13, 20 | eqtrd 2766 | . . . 4 ⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘1)) |
| 22 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) | |
| 23 | fvex 6835 | . . . 4 ⊢ (𝐺‘1) ∈ V | |
| 24 | 21, 22, 23 | fvmpt 6929 | . . 3 ⊢ (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1)) |
| 25 | 5, 24 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1) |
| 26 | 4, 25 | eqtrdi 2782 | 1 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ifcif 4475 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 · cmul 11011 < clt 11146 ≤ cle 11147 − cmin 11344 / cdiv 11774 2c2 12180 [,]cicc 13248 Cn ccn 23140 IIcii 24796 *𝑝cpco 24928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-icc 13252 df-top 22810 df-topon 22827 df-cn 23143 df-pco 24933 |
| This theorem is referenced by: pcohtpylem 24947 pcorevlem 24954 pcophtb 24957 om1addcl 24961 pi1xfrf 24981 pi1xfr 24983 pi1xfrcnvlem 24984 pi1coghm 24989 connpconn 35277 sconnpht2 35280 cvmlift3lem6 35366 |
| Copyright terms: Public domain | W3C validator |