| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pco1 | Structured version Visualization version GIF version | ||
| Description: The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| Ref | Expression |
|---|---|
| pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| Ref | Expression |
|---|---|
| pco1 | ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 2 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 3 | 1, 2 | pcoval 24927 | . . 3 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
| 4 | 3 | fveq1d 6828 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1)) |
| 5 | 1elunit 13391 | . . 3 ⊢ 1 ∈ (0[,]1) | |
| 6 | halflt1 12359 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
| 7 | halfre 12355 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
| 8 | 1re 11134 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 9 | 7, 8 | ltnlei 11255 | . . . . . . . 8 ⊢ ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2)) |
| 10 | 6, 9 | mpbi 230 | . . . . . . 7 ⊢ ¬ 1 ≤ (1 / 2) |
| 11 | breq1 5098 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2))) | |
| 12 | 10, 11 | mtbiri 327 | . . . . . 6 ⊢ (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2)) |
| 13 | 12 | iffalsed 4489 | . . . . 5 ⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘((2 · 𝑥) − 1))) |
| 14 | oveq2 7361 | . . . . . . . . 9 ⊢ (𝑥 = 1 → (2 · 𝑥) = (2 · 1)) | |
| 15 | 2t1e2 12304 | . . . . . . . . 9 ⊢ (2 · 1) = 2 | |
| 16 | 14, 15 | eqtrdi 2780 | . . . . . . . 8 ⊢ (𝑥 = 1 → (2 · 𝑥) = 2) |
| 17 | 16 | oveq1d 7368 | . . . . . . 7 ⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1)) |
| 18 | 2m1e1 12267 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
| 19 | 17, 18 | eqtrdi 2780 | . . . . . 6 ⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) = 1) |
| 20 | 19 | fveq2d 6830 | . . . . 5 ⊢ (𝑥 = 1 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘1)) |
| 21 | 13, 20 | eqtrd 2764 | . . . 4 ⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘1)) |
| 22 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) | |
| 23 | fvex 6839 | . . . 4 ⊢ (𝐺‘1) ∈ V | |
| 24 | 21, 22, 23 | fvmpt 6934 | . . 3 ⊢ (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1)) |
| 25 | 5, 24 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1) |
| 26 | 4, 25 | eqtrdi 2780 | 1 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 · cmul 11033 < clt 11168 ≤ cle 11169 − cmin 11365 / cdiv 11795 2c2 12201 [,]cicc 13269 Cn ccn 23127 IIcii 24784 *𝑝cpco 24916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-icc 13273 df-top 22797 df-topon 22814 df-cn 23130 df-pco 24921 |
| This theorem is referenced by: pcohtpylem 24935 pcorevlem 24942 pcophtb 24945 om1addcl 24949 pi1xfrf 24969 pi1xfr 24971 pi1xfrcnvlem 24972 pi1coghm 24977 connpconn 35210 sconnpht2 35213 cvmlift3lem6 35299 |
| Copyright terms: Public domain | W3C validator |