MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pco1 Structured version   Visualization version   GIF version

Theorem pco1 24986
Description: The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pco1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))

Proof of Theorem pco1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
2 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2pcoval 24982 . . 3 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
43fveq1d 6898 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1))
5 1elunit 13482 . . 3 1 ∈ (0[,]1)
6 halflt1 12463 . . . . . . . 8 (1 / 2) < 1
7 halfre 12459 . . . . . . . . 9 (1 / 2) ∈ ℝ
8 1re 11246 . . . . . . . . 9 1 ∈ ℝ
97, 8ltnlei 11367 . . . . . . . 8 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
106, 9mpbi 229 . . . . . . 7 ¬ 1 ≤ (1 / 2)
11 breq1 5152 . . . . . . 7 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
1210, 11mtbiri 326 . . . . . 6 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
1312iffalsed 4541 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘((2 · 𝑥) − 1)))
14 oveq2 7427 . . . . . . . . 9 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
15 2t1e2 12408 . . . . . . . . 9 (2 · 1) = 2
1614, 15eqtrdi 2781 . . . . . . . 8 (𝑥 = 1 → (2 · 𝑥) = 2)
1716oveq1d 7434 . . . . . . 7 (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1))
18 2m1e1 12371 . . . . . . 7 (2 − 1) = 1
1917, 18eqtrdi 2781 . . . . . 6 (𝑥 = 1 → ((2 · 𝑥) − 1) = 1)
2019fveq2d 6900 . . . . 5 (𝑥 = 1 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘1))
2113, 20eqtrd 2765 . . . 4 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘1))
22 eqid 2725 . . . 4 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
23 fvex 6909 . . . 4 (𝐺‘1) ∈ V
2421, 22, 23fvmpt 7004 . . 3 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1))
255, 24ax-mp 5 . 2 ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1)
264, 25eqtrdi 2781 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  ifcif 4530   class class class wbr 5149  cmpt 5232  cfv 6549  (class class class)co 7419  0cc0 11140  1c1 11141   · cmul 11145   < clt 11280  cle 11281  cmin 11476   / cdiv 11903  2c2 12300  [,]cicc 13362   Cn ccn 23172  IIcii 24839  *𝑝cpco 24971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-2 12308  df-icc 13366  df-top 22840  df-topon 22857  df-cn 23175  df-pco 24976
This theorem is referenced by:  pcohtpylem  24990  pcorevlem  24997  pcophtb  25000  om1addcl  25004  pi1xfrf  25024  pi1xfr  25026  pi1xfrcnvlem  25027  pi1coghm  25032  connpconn  34976  sconnpht2  34979  cvmlift3lem6  35065
  Copyright terms: Public domain W3C validator