Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pco1 | Structured version Visualization version GIF version |
Description: The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pco1 | ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
3 | 1, 2 | pcoval 24080 | . . 3 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
4 | 3 | fveq1d 6758 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1)) |
5 | 1elunit 13131 | . . 3 ⊢ 1 ∈ (0[,]1) | |
6 | halflt1 12121 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
7 | halfre 12117 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
8 | 1re 10906 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
9 | 7, 8 | ltnlei 11026 | . . . . . . . 8 ⊢ ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2)) |
10 | 6, 9 | mpbi 229 | . . . . . . 7 ⊢ ¬ 1 ≤ (1 / 2) |
11 | breq1 5073 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2))) | |
12 | 10, 11 | mtbiri 326 | . . . . . 6 ⊢ (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2)) |
13 | 12 | iffalsed 4467 | . . . . 5 ⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘((2 · 𝑥) − 1))) |
14 | oveq2 7263 | . . . . . . . . 9 ⊢ (𝑥 = 1 → (2 · 𝑥) = (2 · 1)) | |
15 | 2t1e2 12066 | . . . . . . . . 9 ⊢ (2 · 1) = 2 | |
16 | 14, 15 | eqtrdi 2795 | . . . . . . . 8 ⊢ (𝑥 = 1 → (2 · 𝑥) = 2) |
17 | 16 | oveq1d 7270 | . . . . . . 7 ⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1)) |
18 | 2m1e1 12029 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
19 | 17, 18 | eqtrdi 2795 | . . . . . 6 ⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) = 1) |
20 | 19 | fveq2d 6760 | . . . . 5 ⊢ (𝑥 = 1 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘1)) |
21 | 13, 20 | eqtrd 2778 | . . . 4 ⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘1)) |
22 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) | |
23 | fvex 6769 | . . . 4 ⊢ (𝐺‘1) ∈ V | |
24 | 21, 22, 23 | fvmpt 6857 | . . 3 ⊢ (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1)) |
25 | 5, 24 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1) |
26 | 4, 25 | eqtrdi 2795 | 1 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 2c2 11958 [,]cicc 13011 Cn ccn 22283 IIcii 23944 *𝑝cpco 24069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-icc 13015 df-top 21951 df-topon 21968 df-cn 22286 df-pco 24074 |
This theorem is referenced by: pcohtpylem 24088 pcorevlem 24095 pcophtb 24098 om1addcl 24102 pi1xfrf 24122 pi1xfr 24124 pi1xfrcnvlem 24125 pi1coghm 24130 connpconn 33097 sconnpht2 33100 cvmlift3lem6 33186 |
Copyright terms: Public domain | W3C validator |