Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pco1 | Structured version Visualization version GIF version |
Description: The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pco1 | ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
3 | 1, 2 | pcoval 24280 | . . 3 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) |
4 | 3 | fveq1d 6832 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1)) |
5 | 1elunit 13308 | . . 3 ⊢ 1 ∈ (0[,]1) | |
6 | halflt1 12297 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
7 | halfre 12293 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℝ | |
8 | 1re 11081 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
9 | 7, 8 | ltnlei 11202 | . . . . . . . 8 ⊢ ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2)) |
10 | 6, 9 | mpbi 229 | . . . . . . 7 ⊢ ¬ 1 ≤ (1 / 2) |
11 | breq1 5100 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2))) | |
12 | 10, 11 | mtbiri 327 | . . . . . 6 ⊢ (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2)) |
13 | 12 | iffalsed 4489 | . . . . 5 ⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘((2 · 𝑥) − 1))) |
14 | oveq2 7350 | . . . . . . . . 9 ⊢ (𝑥 = 1 → (2 · 𝑥) = (2 · 1)) | |
15 | 2t1e2 12242 | . . . . . . . . 9 ⊢ (2 · 1) = 2 | |
16 | 14, 15 | eqtrdi 2793 | . . . . . . . 8 ⊢ (𝑥 = 1 → (2 · 𝑥) = 2) |
17 | 16 | oveq1d 7357 | . . . . . . 7 ⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) = (2 − 1)) |
18 | 2m1e1 12205 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
19 | 17, 18 | eqtrdi 2793 | . . . . . 6 ⊢ (𝑥 = 1 → ((2 · 𝑥) − 1) = 1) |
20 | 19 | fveq2d 6834 | . . . . 5 ⊢ (𝑥 = 1 → (𝐺‘((2 · 𝑥) − 1)) = (𝐺‘1)) |
21 | 13, 20 | eqtrd 2777 | . . . 4 ⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) = (𝐺‘1)) |
22 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) | |
23 | fvex 6843 | . . . 4 ⊢ (𝐺‘1) ∈ V | |
24 | 21, 22, 23 | fvmpt 6936 | . . 3 ⊢ (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1)) |
25 | 5, 24 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))‘1) = (𝐺‘1) |
26 | 4, 25 | eqtrdi 2793 | 1 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ifcif 4478 class class class wbr 5097 ↦ cmpt 5180 ‘cfv 6484 (class class class)co 7342 0cc0 10977 1c1 10978 · cmul 10982 < clt 11115 ≤ cle 11116 − cmin 11311 / cdiv 11738 2c2 12134 [,]cicc 13188 Cn ccn 22481 IIcii 24144 *𝑝cpco 24269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-1st 7904 df-2nd 7905 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-2 12142 df-icc 13192 df-top 22149 df-topon 22166 df-cn 22484 df-pco 24274 |
This theorem is referenced by: pcohtpylem 24288 pcorevlem 24295 pcophtb 24298 om1addcl 24302 pi1xfrf 24322 pi1xfr 24324 pi1xfrcnvlem 24325 pi1coghm 24330 connpconn 33494 sconnpht2 33497 cvmlift3lem6 33583 |
Copyright terms: Public domain | W3C validator |