Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0ge2m1nn | Structured version Visualization version GIF version |
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
Ref | Expression |
---|---|
nn0ge2m1nn | ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0) | |
2 | 1red 10907 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
3 | 2re 11977 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
4 | 3 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
5 | nn0re 12172 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
6 | 2, 4, 5 | 3jca 1126 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
8 | simpr 484 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁) | |
9 | 1lt2 12074 | . . . . . 6 ⊢ 1 < 2 | |
10 | 8, 9 | jctil 519 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 < 2 ∧ 2 ≤ 𝑁)) |
11 | ltleletr 10998 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁)) | |
12 | 7, 10, 11 | sylc 65 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁) |
13 | elnnnn0c 12208 | . . . 4 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | |
14 | 1, 12, 13 | sylanbrc 582 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ) |
15 | nn1m1nn 11924 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) |
17 | breq2 5074 | . . . . 5 ⊢ (𝑁 = 1 → (2 ≤ 𝑁 ↔ 2 ≤ 1)) | |
18 | 1re 10906 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
19 | 18, 3 | ltnlei 11026 | . . . . . . 7 ⊢ (1 < 2 ↔ ¬ 2 ≤ 1) |
20 | pm2.21 123 | . . . . . . 7 ⊢ (¬ 2 ≤ 1 → (2 ≤ 1 → (𝑁 − 1) ∈ ℕ)) | |
21 | 19, 20 | sylbi 216 | . . . . . 6 ⊢ (1 < 2 → (2 ≤ 1 → (𝑁 − 1) ∈ ℕ)) |
22 | 9, 21 | ax-mp 5 | . . . . 5 ⊢ (2 ≤ 1 → (𝑁 − 1) ∈ ℕ) |
23 | 17, 22 | syl6bi 252 | . . . 4 ⊢ (𝑁 = 1 → (2 ≤ 𝑁 → (𝑁 − 1) ∈ ℕ)) |
24 | 23 | adantld 490 | . . 3 ⊢ (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)) |
25 | ax-1 6 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ → ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)) | |
26 | 24, 25 | jaoi 853 | . 2 ⊢ ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)) |
27 | 16, 26 | mpcom 38 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 1c1 10803 < clt 10940 ≤ cle 10941 − cmin 11135 ℕcn 11903 2c2 11958 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 |
This theorem is referenced by: nn0ge2m1nn0 12233 wwlksm1edg 28147 clwlkclwwlklem2fv2 28261 clwlkclwwlk 28267 pfxlsw2ccat 31126 fmtnoprmfac1 44905 logbpw2m1 45801 blenpw2m1 45813 nnolog2flm1 45824 |
Copyright terms: Public domain | W3C validator |