| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat2pmatbas | Structured version Visualization version GIF version | ||
| Description: The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 1-Aug-2019.) |
| Ref | Expression |
|---|---|
| mat2pmatbas.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| mat2pmatbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mat2pmatbas.b | ⊢ 𝐵 = (Base‘𝐴) |
| mat2pmatbas.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| mat2pmatbas.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| Ref | Expression |
|---|---|
| mat2pmatbas | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat2pmatbas.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 2 | mat2pmatbas.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | mat2pmatbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | mat2pmatbas.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | eqid 2733 | . . 3 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 6 | 1, 2, 3, 4, 5 | mat2pmatval 22659 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑥𝑀𝑦)))) |
| 7 | mat2pmatbas.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 8 | eqid 2733 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 9 | eqid 2733 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 10 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) | |
| 11 | 4 | fvexi 6845 | . . . 4 ⊢ 𝑃 ∈ V |
| 12 | 11 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ V) |
| 13 | eqid 2733 | . . . . . 6 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 14 | 4 | ply1ring 22179 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 15 | 14 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 16 | 15 | 3ad2ant1 1133 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑃 ∈ Ring) |
| 17 | 4 | ply1lmod 22183 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
| 18 | 17 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ LMod) |
| 19 | 18 | 3ad2ant1 1133 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑃 ∈ LMod) |
| 20 | eqid 2733 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
| 21 | 5, 13, 16, 19, 20, 8 | asclf 21828 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (algSc‘𝑃):(Base‘(Scalar‘𝑃))⟶(Base‘𝑃)) |
| 22 | 4 | ply1sca 22184 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
| 23 | 22 | fveq2d 6835 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 24 | 23 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 25 | 24 | 3ad2ant1 1133 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 26 | 25 | feq2d 6643 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃) ↔ (algSc‘𝑃):(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))) |
| 27 | 21, 26 | mpbird 257 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃)) |
| 28 | simp2 1137 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
| 29 | simp3 1138 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) | |
| 30 | 3 | eleq2i 2825 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
| 31 | 30 | biimpi 216 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
| 32 | 31 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ (Base‘𝐴)) |
| 33 | 32 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
| 34 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 35 | 2, 34 | matecl 22360 | . . . . 5 ⊢ ((𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑥𝑀𝑦) ∈ (Base‘𝑅)) |
| 36 | 28, 29, 33, 35 | syl3anc 1373 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) ∈ (Base‘𝑅)) |
| 37 | 27, 36 | ffvelcdmd 7027 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑥𝑀𝑦)) ∈ (Base‘𝑃)) |
| 38 | 7, 8, 9, 10, 12, 37 | matbas2d 22358 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑥𝑀𝑦))) ∈ (Base‘𝐶)) |
| 39 | 6, 38 | eqeltrd 2833 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 Fincfn 8879 Basecbs 17127 Scalarcsca 17171 Ringcrg 20159 LModclmod 20802 algSccascl 21798 Poly1cpl1 22108 Mat cmat 22342 matToPolyMat cmat2pmat 22639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-gsum 17353 df-prds 17358 df-pws 17360 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-subrng 20470 df-subrg 20494 df-lmod 20804 df-lss 20874 df-sra 21116 df-rgmod 21117 df-dsmm 21678 df-frlm 21693 df-ascl 21801 df-psr 21856 df-mpl 21858 df-opsr 21860 df-psr1 22111 df-ply1 22113 df-mat 22343 df-mat2pmat 22642 |
| This theorem is referenced by: mat2pmatbas0 22662 m2cpm 22676 m2pmfzmap 22682 monmatcollpw 22714 pmatcollpw 22716 chmatcl 22763 chmatval 22764 chpmat1dlem 22770 chpmat1d 22771 chpdmatlem1 22773 chpdmatlem2 22774 chpdmatlem3 22775 chfacfisf 22789 chfacfscmulgsum 22795 chfacfpmmulcl 22796 chfacfpmmul0 22797 chfacfpmmulgsum 22799 chfacfpmmulgsum2 22800 cayhamlem1 22801 cpmadugsumlemC 22810 cpmadugsumlemF 22811 cpmadugsumfi 22812 cpmidgsum2 22814 |
| Copyright terms: Public domain | W3C validator |