![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat2pmatbas | Structured version Visualization version GIF version |
Description: The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 1-Aug-2019.) |
Ref | Expression |
---|---|
mat2pmatbas.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
mat2pmatbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mat2pmatbas.b | ⊢ 𝐵 = (Base‘𝐴) |
mat2pmatbas.p | ⊢ 𝑃 = (Poly1‘𝑅) |
mat2pmatbas.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
Ref | Expression |
---|---|
mat2pmatbas | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatbas.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
2 | mat2pmatbas.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | mat2pmatbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
4 | mat2pmatbas.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | eqid 2799 | . . 3 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
6 | 1, 2, 3, 4, 5 | mat2pmatval 20857 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑥𝑀𝑦)))) |
7 | mat2pmatbas.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
8 | eqid 2799 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
9 | eqid 2799 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
10 | simp1 1167 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) | |
11 | 4 | fvexi 6425 | . . . 4 ⊢ 𝑃 ∈ V |
12 | 11 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ V) |
13 | eqid 2799 | . . . . . 6 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
14 | 4 | ply1ring 19940 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
15 | 14 | 3ad2ant2 1165 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
16 | 15 | 3ad2ant1 1164 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑃 ∈ Ring) |
17 | 4 | ply1lmod 19944 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
18 | 17 | 3ad2ant2 1165 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ LMod) |
19 | 18 | 3ad2ant1 1164 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑃 ∈ LMod) |
20 | eqid 2799 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
21 | 5, 13, 16, 19, 20, 8 | asclf 19660 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (algSc‘𝑃):(Base‘(Scalar‘𝑃))⟶(Base‘𝑃)) |
22 | 4 | ply1sca 19945 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
23 | 22 | fveq2d 6415 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
24 | 23 | 3ad2ant2 1165 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
25 | 24 | 3ad2ant1 1164 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
26 | 25 | feq2d 6242 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃) ↔ (algSc‘𝑃):(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))) |
27 | 21, 26 | mpbird 249 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃)) |
28 | simp2 1168 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
29 | simp3 1169 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) | |
30 | 3 | eleq2i 2870 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
31 | 30 | biimpi 208 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
32 | 31 | 3ad2ant3 1166 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ (Base‘𝐴)) |
33 | 32 | 3ad2ant1 1164 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
34 | eqid 2799 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
35 | 2, 34 | matecl 20556 | . . . . 5 ⊢ ((𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑥𝑀𝑦) ∈ (Base‘𝑅)) |
36 | 28, 29, 33, 35 | syl3anc 1491 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) ∈ (Base‘𝑅)) |
37 | 27, 36 | ffvelrnd 6586 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑥𝑀𝑦)) ∈ (Base‘𝑃)) |
38 | 7, 8, 9, 10, 12, 37 | matbas2d 20554 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑥𝑀𝑦))) ∈ (Base‘𝐶)) |
39 | 6, 38 | eqeltrd 2878 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 Fincfn 8195 Basecbs 16184 Scalarcsca 16270 Ringcrg 18863 LModclmod 19181 algSccascl 19634 Poly1cpl1 19869 Mat cmat 20538 matToPolyMat cmat2pmat 20837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-ot 4377 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-ofr 7132 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-sup 8590 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-fzo 12721 df-seq 13056 df-hash 13371 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-hom 16291 df-cco 16292 df-0g 16417 df-gsum 16418 df-prds 16423 df-pws 16425 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-submnd 17651 df-grp 17741 df-minusg 17742 df-sbg 17743 df-mulg 17857 df-subg 17904 df-ghm 17971 df-cntz 18062 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-subrg 19096 df-lmod 19183 df-lss 19251 df-sra 19495 df-rgmod 19496 df-ascl 19637 df-psr 19679 df-mpl 19681 df-opsr 19683 df-psr1 19872 df-ply1 19874 df-dsmm 20401 df-frlm 20416 df-mat 20539 df-mat2pmat 20840 |
This theorem is referenced by: mat2pmatbas0 20860 m2cpm 20874 m2pmfzmap 20880 monmatcollpw 20912 pmatcollpw 20914 chmatcl 20961 chmatval 20962 chpmat1dlem 20968 chpmat1d 20969 chpdmatlem1 20971 chpdmatlem2 20972 chpdmatlem3 20973 chfacfisf 20987 chfacfscmulgsum 20993 chfacfpmmulcl 20994 chfacfpmmul0 20995 chfacfpmmulgsum 20997 chfacfpmmulgsum2 20998 cayhamlem1 20999 cpmadugsumlemC 21008 cpmadugsumlemF 21009 cpmadugsumfi 21010 cpmidgsum2 21012 |
Copyright terms: Public domain | W3C validator |