MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpwlem Structured version   Visualization version   GIF version

Theorem pmatcollpwlem 21382
Description: Lemma for pmatcollpw 21383. (Contributed by AV, 26-Oct-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
pmatcollpwlem ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))

Proof of Theorem pmatcollpwlem
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmatcollpw.p . . . . . . . 8 𝑃 = (Poly1𝑅)
21ply1assa 20361 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
323ad2ant2 1130 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ AssAlg)
43adantr 483 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ AssAlg)
543ad2ant1 1129 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → 𝑃 ∈ AssAlg)
6 eqid 2821 . . . . . 6 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
7 eqid 2821 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2821 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
9 simp2 1133 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
10 simp3 1134 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
11 simp2 1133 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ CRing)
1211adantr 483 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ CRing)
13 simp3 1134 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
1413adantr 483 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑀𝐵)
15 simpr 487 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
16 pmatcollpw.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
17 pmatcollpw.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
181, 16, 17, 6, 8decpmatcl 21369 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑀𝐵𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
1912, 14, 15, 18syl3anc 1367 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
20193ad2ant1 1129 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
216, 7, 8, 9, 10, 20matecld 21029 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅))
22 crngring 19302 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
23223ad2ant2 1130 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
241ply1sca 20415 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
2523, 24syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 = (Scalar‘𝑃))
2625eqcomd 2827 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑃) = 𝑅)
2726fveq2d 6669 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
2827eleq2d 2898 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅)))
2928adantr 483 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅)))
30293ad2ant1 1129 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅)))
3121, 30mpbird 259 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)))
32 pmatcollpw.x . . . . . . 7 𝑋 = (var1𝑅)
33 eqid 2821 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
34 pmatcollpw.e . . . . . . 7 = (.g‘(mulGrp‘𝑃))
35 eqid 2821 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
361, 32, 33, 34, 35ply1moncl 20433 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
3723, 36sylan 582 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
38373ad2ant1 1129 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑛 𝑋) ∈ (Base‘𝑃))
39 eqid 2821 . . . . 5 (algSc‘𝑃) = (algSc‘𝑃)
40 eqid 2821 . . . . 5 (Scalar‘𝑃) = (Scalar‘𝑃)
41 eqid 2821 . . . . 5 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
42 eqid 2821 . . . . 5 (.r𝑃) = (.r𝑃)
43 eqid 2821 . . . . 5 ( ·𝑠𝑃) = ( ·𝑠𝑃)
4439, 40, 41, 35, 42, 43asclmul2 20109 . . . 4 ((𝑃 ∈ AssAlg ∧ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑛 𝑋) ∈ (Base‘𝑃)) → ((𝑛 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)))
455, 31, 38, 44syl3anc 1367 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑛 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)))
46 eqidd 2822 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))
47 oveq12 7159 . . . . . . . 8 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑎(𝑀 decompPMat 𝑛)𝑏))
4847fveq2d 6669 . . . . . . 7 ((𝑖 = 𝑎𝑗 = 𝑏) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)))
4948adantl 484 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)))
50 fvexd 6680 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)) ∈ V)
5146, 49, 9, 10, 50ovmpod 7296 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)))
5251eqcomd 2827 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏))
5352oveq2d 7166 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑛 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑛 𝑋)(.r𝑃)(𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏)))
5445, 53eqtr3d 2858 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)) = ((𝑛 𝑋)(.r𝑃)(𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏)))
551ply1ring 20410 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5622, 55syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
57563ad2ant2 1130 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
5857adantr 483 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ Ring)
59583ad2ant1 1129 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → 𝑃 ∈ Ring)
60 simpl1 1187 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
6112, 22syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
62613ad2ant1 1129 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
63 simp2 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
64 simp3 1134 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
65193ad2ant1 1129 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
666, 7, 8, 63, 64, 65matecld 21029 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅))
671, 39, 7, 35ply1sclcl 20448 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) ∈ (Base‘𝑃))
6862, 66, 67syl2anc 586 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) ∈ (Base‘𝑃))
6916, 35, 17, 60, 58, 68matbas2d 21026 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵)
7037, 69jca 514 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑋) ∈ (Base‘𝑃) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵))
71703ad2ant1 1129 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑛 𝑋) ∈ (Base‘𝑃) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵))
729, 10jca 514 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑁𝑏𝑁))
73 pmatcollpw.m . . . 4 = ( ·𝑠𝐶)
7416, 17, 35, 73, 42matvscacell 21039 . . 3 ((𝑃 ∈ Ring ∧ ((𝑛 𝑋) ∈ (Base‘𝑃) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎((𝑛 𝑋) (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = ((𝑛 𝑋)(.r𝑃)(𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏)))
7559, 71, 72, 74syl3anc 1367 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎((𝑛 𝑋) (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = ((𝑛 𝑋)(.r𝑃)(𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏)))
7623adantr 483 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
77 pmatcollpw.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
7877, 6, 8, 1, 39mat2pmatval 21326 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑀 decompPMat 𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))
7960, 76, 19, 78syl3anc 1367 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑀 decompPMat 𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))
8079eqcomd 2827 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) = (𝑇‘(𝑀 decompPMat 𝑛)))
8180oveq2d 7166 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑋) (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))) = ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))
8281oveqd 7167 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑎((𝑛 𝑋) (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))
83823ad2ant1 1129 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎((𝑛 𝑋) (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))
8454, 75, 833eqtr2d 2862 1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3495  cfv 6350  (class class class)co 7150  cmpo 7152  Fincfn 8503  0cn0 11891  Basecbs 16477  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  .gcmg 18218  mulGrpcmgp 19233  Ringcrg 19291  CRingccrg 19292  AssAlgcasa 20076  algSccascl 20078  var1cv1 20338  Poly1cpl1 20339   Mat cmat 21010   matToPolyMat cmat2pmat 21306   decompPMat cdecpmat 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-subrg 19527  df-lmod 19630  df-lss 19698  df-sra 19938  df-rgmod 19939  df-assa 20079  df-ascl 20081  df-psr 20130  df-mvr 20131  df-mpl 20132  df-opsr 20134  df-psr1 20342  df-vr1 20343  df-ply1 20344  df-coe1 20345  df-dsmm 20870  df-frlm 20885  df-mat 21011  df-mat2pmat 21309  df-decpmat 21365
This theorem is referenced by:  pmatcollpw  21383
  Copyright terms: Public domain W3C validator