Step | Hyp | Ref
| Expression |
1 | | pmatcollpw.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
2 | 1 | ply1assa 21280 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑃 ∈ AssAlg) |
3 | 2 | 3ad2ant2 1132 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ AssAlg) |
4 | 3 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ AssAlg) |
5 | 4 | 3ad2ant1 1131 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑃 ∈ AssAlg) |
6 | | eqid 2738 |
. . . . . 6
⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) |
7 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
8 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(𝑁 Mat
𝑅)) = (Base‘(𝑁 Mat 𝑅)) |
9 | | simp2 1135 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑎 ∈ 𝑁) |
10 | | simp3 1136 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑏 ∈ 𝑁) |
11 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ CRing) |
12 | 11 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ CRing) |
13 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
14 | 13 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
15 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
16 | | pmatcollpw.c |
. . . . . . . . 9
⊢ 𝐶 = (𝑁 Mat 𝑃) |
17 | | pmatcollpw.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐶) |
18 | 1, 16, 17, 6, 8 | decpmatcl 21824 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
19 | 12, 14, 15, 18 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
20 | 19 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
21 | 6, 7, 8, 9, 10, 20 | matecld 21483 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅)) |
22 | | crngring 19710 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
23 | 22 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
24 | 1 | ply1sca 21334 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 = (Scalar‘𝑃)) |
26 | 25 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑃) = 𝑅) |
27 | 26 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
28 | 27 | eleq2d 2824 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅))) |
29 | 28 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅))) |
30 | 29 | 3ad2ant1 1131 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅))) |
31 | 21, 30 | mpbird 256 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃))) |
32 | | pmatcollpw.x |
. . . . . . 7
⊢ 𝑋 = (var1‘𝑅) |
33 | | eqid 2738 |
. . . . . . 7
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
34 | | pmatcollpw.e |
. . . . . . 7
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
35 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑃) =
(Base‘𝑃) |
36 | 1, 32, 33, 34, 35 | ply1moncl 21352 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0)
→ (𝑛 ↑ 𝑋) ∈ (Base‘𝑃)) |
37 | 23, 36 | sylan 579 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑛 ↑ 𝑋) ∈ (Base‘𝑃)) |
38 | 37 | 3ad2ant1 1131 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑛 ↑ 𝑋) ∈ (Base‘𝑃)) |
39 | | eqid 2738 |
. . . . 5
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
40 | | eqid 2738 |
. . . . 5
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
41 | | eqid 2738 |
. . . . 5
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
42 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑃) = (.r‘𝑃) |
43 | | eqid 2738 |
. . . . 5
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
44 | 39, 40, 41, 35, 42, 43 | asclmul2 21001 |
. . . 4
⊢ ((𝑃 ∈ AssAlg ∧ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑛 ↑ 𝑋) ∈ (Base‘𝑃)) → ((𝑛 ↑ 𝑋)(.r‘𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) |
45 | 5, 31, 38, 44 | syl3anc 1369 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑛 ↑ 𝑋)(.r‘𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) |
46 | | eqidd 2739 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))) |
47 | | oveq12 7264 |
. . . . . . . 8
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑎(𝑀 decompPMat 𝑛)𝑏)) |
48 | 47 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) |
49 | 48 | adantl 481 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ (𝑖 = 𝑎 ∧ 𝑗 = 𝑏)) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) |
50 | | fvexd 6771 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)) ∈ V) |
51 | 46, 49, 9, 10, 50 | ovmpod 7403 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) |
52 | 51 | eqcomd 2744 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏)) |
53 | 52 | oveq2d 7271 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑛 ↑ 𝑋)(.r‘𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑛 ↑ 𝑋)(.r‘𝑃)(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏))) |
54 | 45, 53 | eqtr3d 2780 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) = ((𝑛 ↑ 𝑋)(.r‘𝑃)(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏))) |
55 | 1 | ply1ring 21329 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
56 | 22, 55 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
57 | 56 | 3ad2ant2 1132 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
58 | 57 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ Ring) |
59 | 58 | 3ad2ant1 1131 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑃 ∈ Ring) |
60 | | simpl1 1189 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin) |
61 | 12, 22 | syl 17 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
62 | 61 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
63 | | simp2 1135 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
64 | | simp3 1136 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
65 | 19 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
66 | 6, 7, 8, 63, 64, 65 | matecld 21483 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅)) |
67 | 1, 39, 7, 35 | ply1sclcl 21367 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) ∈ (Base‘𝑃)) |
68 | 62, 66, 67 | syl2anc 583 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) ∈ (Base‘𝑃)) |
69 | 16, 35, 17, 60, 58, 68 | matbas2d 21480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵) |
70 | 37, 69 | jca 511 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵)) |
71 | 70 | 3ad2ant1 1131 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑛 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵)) |
72 | 9, 10 | jca 511 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) |
73 | | pmatcollpw.m |
. . . 4
⊢ ∗ = (
·𝑠 ‘𝐶) |
74 | 16, 17, 35, 73, 42 | matvscacell 21493 |
. . 3
⊢ ((𝑃 ∈ Ring ∧ ((𝑛 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎((𝑛 ↑ 𝑋) ∗ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = ((𝑛 ↑ 𝑋)(.r‘𝑃)(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏))) |
75 | 59, 71, 72, 74 | syl3anc 1369 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎((𝑛 ↑ 𝑋) ∗ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = ((𝑛 ↑ 𝑋)(.r‘𝑃)(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏))) |
76 | 23 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
77 | | pmatcollpw.t |
. . . . . . . 8
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
78 | 77, 6, 8, 1, 39 | mat2pmatval 21781 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑀 decompPMat 𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))) |
79 | 60, 76, 19, 78 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑀 decompPMat 𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))) |
80 | 79 | eqcomd 2744 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) = (𝑇‘(𝑀 decompPMat 𝑛))) |
81 | 80 | oveq2d 7271 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑋) ∗ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))) = ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))) |
82 | 81 | oveqd 7272 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑎((𝑛 ↑ 𝑋) ∗ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) |
83 | 82 | 3ad2ant1 1131 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎((𝑛 ↑ 𝑋) ∗ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) |
84 | 54, 75, 83 | 3eqtr2d 2784 |
1
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) |