Step | Hyp | Ref
| Expression |
1 | | pmatcollpw.p |
. . . . . . . 8
β’ π = (Poly1βπ
) |
2 | 1 | ply1assa 21714 |
. . . . . . 7
β’ (π
β CRing β π β AssAlg) |
3 | 2 | 3ad2ant2 1134 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β AssAlg) |
4 | 3 | adantr 481 |
. . . . 5
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β π β AssAlg) |
5 | 4 | 3ad2ant1 1133 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β π β AssAlg) |
6 | | eqid 2732 |
. . . . . 6
β’ (π Mat π
) = (π Mat π
) |
7 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ
) |
8 | | eqid 2732 |
. . . . . 6
β’
(Baseβ(π Mat
π
)) = (Baseβ(π Mat π
)) |
9 | | simp2 1137 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β π β π) |
10 | | simp3 1138 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β π β π) |
11 | | simp2 1137 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π
β CRing) |
12 | 11 | adantr 481 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β π
β CRing) |
13 | | simp3 1138 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β π΅) |
14 | 13 | adantr 481 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β π β π΅) |
15 | | simpr 485 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β π β
β0) |
16 | | pmatcollpw.c |
. . . . . . . . 9
β’ πΆ = (π Mat π) |
17 | | pmatcollpw.b |
. . . . . . . . 9
β’ π΅ = (BaseβπΆ) |
18 | 1, 16, 17, 6, 8 | decpmatcl 22260 |
. . . . . . . 8
β’ ((π
β CRing β§ π β π΅ β§ π β β0) β (π decompPMat π) β (Baseβ(π Mat π
))) |
19 | 12, 14, 15, 18 | syl3anc 1371 |
. . . . . . 7
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β (π decompPMat π) β (Baseβ(π Mat π
))) |
20 | 19 | 3ad2ant1 1133 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β (π decompPMat π) β (Baseβ(π Mat π
))) |
21 | 6, 7, 8, 9, 10, 20 | matecld 21919 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β (π(π decompPMat π)π) β (Baseβπ
)) |
22 | | crngring 20061 |
. . . . . . . . . . . 12
β’ (π
β CRing β π
β Ring) |
23 | 22 | 3ad2ant2 1134 |
. . . . . . . . . . 11
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π
β Ring) |
24 | 1 | ply1sca 21766 |
. . . . . . . . . . 11
β’ (π
β Ring β π
= (Scalarβπ)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π
= (Scalarβπ)) |
26 | 25 | eqcomd 2738 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (Scalarβπ) = π
) |
27 | 26 | fveq2d 6892 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (Baseβ(Scalarβπ)) = (Baseβπ
)) |
28 | 27 | eleq2d 2819 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β ((π(π decompPMat π)π) β (Baseβ(Scalarβπ)) β (π(π decompPMat π)π) β (Baseβπ
))) |
29 | 28 | adantr 481 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β ((π(π decompPMat π)π) β (Baseβ(Scalarβπ)) β (π(π decompPMat π)π) β (Baseβπ
))) |
30 | 29 | 3ad2ant1 1133 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β ((π(π decompPMat π)π) β (Baseβ(Scalarβπ)) β (π(π decompPMat π)π) β (Baseβπ
))) |
31 | 21, 30 | mpbird 256 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β (π(π decompPMat π)π) β (Baseβ(Scalarβπ))) |
32 | | pmatcollpw.x |
. . . . . . 7
β’ π = (var1βπ
) |
33 | | eqid 2732 |
. . . . . . 7
β’
(mulGrpβπ) =
(mulGrpβπ) |
34 | | pmatcollpw.e |
. . . . . . 7
β’ β =
(.gβ(mulGrpβπ)) |
35 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
36 | 1, 32, 33, 34, 35 | ply1moncl 21784 |
. . . . . 6
β’ ((π
β Ring β§ π β β0)
β (π β π) β (Baseβπ)) |
37 | 23, 36 | sylan 580 |
. . . . 5
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β (π β π) β (Baseβπ)) |
38 | 37 | 3ad2ant1 1133 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β (π β π) β (Baseβπ)) |
39 | | eqid 2732 |
. . . . 5
β’
(algScβπ) =
(algScβπ) |
40 | | eqid 2732 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
41 | | eqid 2732 |
. . . . 5
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
42 | | eqid 2732 |
. . . . 5
β’
(.rβπ) = (.rβπ) |
43 | | eqid 2732 |
. . . . 5
β’ (
Β·π βπ) = ( Β·π
βπ) |
44 | 39, 40, 41, 35, 42, 43 | asclmul2 21432 |
. . . 4
β’ ((π β AssAlg β§ (π(π decompPMat π)π) β (Baseβ(Scalarβπ)) β§ (π β π) β (Baseβπ)) β ((π β π)(.rβπ)((algScβπ)β(π(π decompPMat π)π))) = ((π(π decompPMat π)π)( Β·π
βπ)(π β π))) |
45 | 5, 31, 38, 44 | syl3anc 1371 |
. . 3
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β ((π β π)(.rβπ)((algScβπ)β(π(π decompPMat π)π))) = ((π(π decompPMat π)π)( Β·π
βπ)(π β π))) |
46 | | eqidd 2733 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π))) = (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π)))) |
47 | | oveq12 7414 |
. . . . . . . 8
β’ ((π = π β§ π = π) β (π(π decompPMat π)π) = (π(π decompPMat π)π)) |
48 | 47 | fveq2d 6892 |
. . . . . . 7
β’ ((π = π β§ π = π) β ((algScβπ)β(π(π decompPMat π)π)) = ((algScβπ)β(π(π decompPMat π)π))) |
49 | 48 | adantl 482 |
. . . . . 6
β’
(((((π β Fin
β§ π
β CRing β§
π β π΅) β§ π β β0) β§ π β π β§ π β π) β§ (π = π β§ π = π)) β ((algScβπ)β(π(π decompPMat π)π)) = ((algScβπ)β(π(π decompPMat π)π))) |
50 | | fvexd 6903 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β ((algScβπ)β(π(π decompPMat π)π)) β V) |
51 | 46, 49, 9, 10, 50 | ovmpod 7556 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β (π(π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π)))π) = ((algScβπ)β(π(π decompPMat π)π))) |
52 | 51 | eqcomd 2738 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β ((algScβπ)β(π(π decompPMat π)π)) = (π(π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π)))π)) |
53 | 52 | oveq2d 7421 |
. . 3
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β ((π β π)(.rβπ)((algScβπ)β(π(π decompPMat π)π))) = ((π β π)(.rβπ)(π(π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π)))π))) |
54 | 45, 53 | eqtr3d 2774 |
. 2
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β ((π(π decompPMat π)π)( Β·π
βπ)(π β π)) = ((π β π)(.rβπ)(π(π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π)))π))) |
55 | 1 | ply1ring 21761 |
. . . . . . 7
β’ (π
β Ring β π β Ring) |
56 | 22, 55 | syl 17 |
. . . . . 6
β’ (π
β CRing β π β Ring) |
57 | 56 | 3ad2ant2 1134 |
. . . . 5
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β Ring) |
58 | 57 | adantr 481 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β π β Ring) |
59 | 58 | 3ad2ant1 1133 |
. . 3
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β π β Ring) |
60 | | simpl1 1191 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β π β Fin) |
61 | 12, 22 | syl 17 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β π
β Ring) |
62 | 61 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β π
β Ring) |
63 | | simp2 1137 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β π β π) |
64 | | simp3 1138 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β π β π) |
65 | 19 | 3ad2ant1 1133 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β (π decompPMat π) β (Baseβ(π Mat π
))) |
66 | 6, 7, 8, 63, 64, 65 | matecld 21919 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β (π(π decompPMat π)π) β (Baseβπ
)) |
67 | 1, 39, 7, 35 | ply1sclcl 21799 |
. . . . . . 7
β’ ((π
β Ring β§ (π(π decompPMat π)π) β (Baseβπ
)) β ((algScβπ)β(π(π decompPMat π)π)) β (Baseβπ)) |
68 | 62, 66, 67 | syl2anc 584 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β ((algScβπ)β(π(π decompPMat π)π)) β (Baseβπ)) |
69 | 16, 35, 17, 60, 58, 68 | matbas2d 21916 |
. . . . 5
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π))) β π΅) |
70 | 37, 69 | jca 512 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β ((π β π) β (Baseβπ) β§ (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π))) β π΅)) |
71 | 70 | 3ad2ant1 1133 |
. . 3
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β ((π β π) β (Baseβπ) β§ (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π))) β π΅)) |
72 | 9, 10 | jca 512 |
. . 3
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β (π β π β§ π β π)) |
73 | | pmatcollpw.m |
. . . 4
β’ β = (
Β·π βπΆ) |
74 | 16, 17, 35, 73, 42 | matvscacell 21929 |
. . 3
β’ ((π β Ring β§ ((π β π) β (Baseβπ) β§ (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π))) β π΅) β§ (π β π β§ π β π)) β (π((π β π) β (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π))))π) = ((π β π)(.rβπ)(π(π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π)))π))) |
75 | 59, 71, 72, 74 | syl3anc 1371 |
. 2
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β (π((π β π) β (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π))))π) = ((π β π)(.rβπ)(π(π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π)))π))) |
76 | 23 | adantr 481 |
. . . . . . 7
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β π
β Ring) |
77 | | pmatcollpw.t |
. . . . . . . 8
β’ π = (π matToPolyMat π
) |
78 | 77, 6, 8, 1, 39 | mat2pmatval 22217 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring β§ (π decompPMat π) β (Baseβ(π Mat π
))) β (πβ(π decompPMat π)) = (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π)))) |
79 | 60, 76, 19, 78 | syl3anc 1371 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β (πβ(π decompPMat π)) = (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π)))) |
80 | 79 | eqcomd 2738 |
. . . . 5
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π))) = (πβ(π decompPMat π))) |
81 | 80 | oveq2d 7421 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β ((π β π) β (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π)))) = ((π β π) β (πβ(π decompPMat π)))) |
82 | 81 | oveqd 7422 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β (π((π β π) β (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π))))π) = (π((π β π) β (πβ(π decompPMat π)))π)) |
83 | 82 | 3ad2ant1 1133 |
. 2
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β (π((π β π) β (π β π, π β π β¦ ((algScβπ)β(π(π decompPMat π)π))))π) = (π((π β π) β (πβ(π decompPMat π)))π)) |
84 | 54, 75, 83 | 3eqtr2d 2778 |
1
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β0) β§ π β π β§ π β π) β ((π(π decompPMat π)π)( Β·π
βπ)(π β π)) = (π((π β π) β (πβ(π decompPMat π)))π)) |