| Step | Hyp | Ref
| Expression |
| 1 | | pmatcollpw.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
| 2 | 1 | ply1assa 22201 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑃 ∈ AssAlg) |
| 3 | 2 | 3ad2ant2 1135 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ AssAlg) |
| 4 | 3 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ AssAlg) |
| 5 | 4 | 3ad2ant1 1134 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑃 ∈ AssAlg) |
| 6 | | eqid 2737 |
. . . . . 6
⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) |
| 7 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 8 | | eqid 2737 |
. . . . . 6
⊢
(Base‘(𝑁 Mat
𝑅)) = (Base‘(𝑁 Mat 𝑅)) |
| 9 | | simp2 1138 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑎 ∈ 𝑁) |
| 10 | | simp3 1139 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑏 ∈ 𝑁) |
| 11 | | simp2 1138 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ CRing) |
| 12 | 11 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ CRing) |
| 13 | | simp3 1139 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
| 14 | 13 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
| 15 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 16 | | pmatcollpw.c |
. . . . . . . . 9
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 17 | | pmatcollpw.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐶) |
| 18 | 1, 16, 17, 6, 8 | decpmatcl 22773 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 19 | 12, 14, 15, 18 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 20 | 19 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 21 | 6, 7, 8, 9, 10, 20 | matecld 22432 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅)) |
| 22 | | crngring 20242 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 23 | 22 | 3ad2ant2 1135 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 24 | 1 | ply1sca 22254 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 = (Scalar‘𝑃)) |
| 26 | 25 | eqcomd 2743 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑃) = 𝑅) |
| 27 | 26 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
| 28 | 27 | eleq2d 2827 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅))) |
| 29 | 28 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅))) |
| 30 | 29 | 3ad2ant1 1134 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅))) |
| 31 | 21, 30 | mpbird 257 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃))) |
| 32 | | pmatcollpw.x |
. . . . . . 7
⊢ 𝑋 = (var1‘𝑅) |
| 33 | | eqid 2737 |
. . . . . . 7
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
| 34 | | pmatcollpw.e |
. . . . . . 7
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
| 35 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 36 | 1, 32, 33, 34, 35 | ply1moncl 22274 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0)
→ (𝑛 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 37 | 23, 36 | sylan 580 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑛 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 38 | 37 | 3ad2ant1 1134 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑛 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 39 | | eqid 2737 |
. . . . 5
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
| 40 | | eqid 2737 |
. . . . 5
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
| 41 | | eqid 2737 |
. . . . 5
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
| 42 | | eqid 2737 |
. . . . 5
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 43 | | eqid 2737 |
. . . . 5
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
| 44 | 39, 40, 41, 35, 42, 43 | asclmul2 21907 |
. . . 4
⊢ ((𝑃 ∈ AssAlg ∧ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑛 ↑ 𝑋) ∈ (Base‘𝑃)) → ((𝑛 ↑ 𝑋)(.r‘𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) |
| 45 | 5, 31, 38, 44 | syl3anc 1373 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑛 ↑ 𝑋)(.r‘𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋))) |
| 46 | | eqidd 2738 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))) |
| 47 | | oveq12 7440 |
. . . . . . . 8
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑎(𝑀 decompPMat 𝑛)𝑏)) |
| 48 | 47 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) |
| 49 | 48 | adantl 481 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ (𝑖 = 𝑎 ∧ 𝑗 = 𝑏)) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) |
| 50 | | fvexd 6921 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)) ∈ V) |
| 51 | 46, 49, 9, 10, 50 | ovmpod 7585 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) |
| 52 | 51 | eqcomd 2743 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏)) |
| 53 | 52 | oveq2d 7447 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑛 ↑ 𝑋)(.r‘𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑛 ↑ 𝑋)(.r‘𝑃)(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏))) |
| 54 | 45, 53 | eqtr3d 2779 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) = ((𝑛 ↑ 𝑋)(.r‘𝑃)(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏))) |
| 55 | 1 | ply1ring 22249 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 56 | 22, 55 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
| 57 | 56 | 3ad2ant2 1135 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 58 | 57 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ Ring) |
| 59 | 58 | 3ad2ant1 1134 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑃 ∈ Ring) |
| 60 | | simpl1 1192 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin) |
| 61 | 12, 22 | syl 17 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 62 | 61 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 63 | | simp2 1138 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 64 | | simp3 1139 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 65 | 19 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 66 | 6, 7, 8, 63, 64, 65 | matecld 22432 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅)) |
| 67 | 1, 39, 7, 35 | ply1sclcl 22289 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) ∈ (Base‘𝑃)) |
| 68 | 62, 66, 67 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) ∈ (Base‘𝑃)) |
| 69 | 16, 35, 17, 60, 58, 68 | matbas2d 22429 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵) |
| 70 | 37, 69 | jca 511 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵)) |
| 71 | 70 | 3ad2ant1 1134 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑛 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵)) |
| 72 | 9, 10 | jca 511 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) |
| 73 | | pmatcollpw.m |
. . . 4
⊢ ∗ = (
·𝑠 ‘𝐶) |
| 74 | 16, 17, 35, 73, 42 | matvscacell 22442 |
. . 3
⊢ ((𝑃 ∈ Ring ∧ ((𝑛 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎((𝑛 ↑ 𝑋) ∗ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = ((𝑛 ↑ 𝑋)(.r‘𝑃)(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏))) |
| 75 | 59, 71, 72, 74 | syl3anc 1373 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎((𝑛 ↑ 𝑋) ∗ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = ((𝑛 ↑ 𝑋)(.r‘𝑃)(𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏))) |
| 76 | 23 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 77 | | pmatcollpw.t |
. . . . . . . 8
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| 78 | 77, 6, 8, 1, 39 | mat2pmatval 22730 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑀 decompPMat 𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))) |
| 79 | 60, 76, 19, 78 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑀 decompPMat 𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))) |
| 80 | 79 | eqcomd 2743 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) = (𝑇‘(𝑀 decompPMat 𝑛))) |
| 81 | 80 | oveq2d 7447 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ↑ 𝑋) ∗ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))) = ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))) |
| 82 | 81 | oveqd 7448 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑎((𝑛 ↑ 𝑋) ∗ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) |
| 83 | 82 | 3ad2ant1 1134 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑎((𝑛 ↑ 𝑋) ∗ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) |
| 84 | 54, 75, 83 | 3eqtr2d 2783 |
1
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠
‘𝑃)(𝑛 ↑ 𝑋)) = (𝑎((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))𝑏)) |