Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpwlem Structured version   Visualization version   GIF version

Theorem pmatcollpwlem 21392
 Description: Lemma for pmatcollpw 21393. (Contributed by AV, 26-Oct-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
pmatcollpwlem ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))

Proof of Theorem pmatcollpwlem
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmatcollpw.p . . . . . . . 8 𝑃 = (Poly1𝑅)
21ply1assa 20835 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
323ad2ant2 1131 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ AssAlg)
43adantr 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ AssAlg)
543ad2ant1 1130 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → 𝑃 ∈ AssAlg)
6 eqid 2798 . . . . . 6 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
7 eqid 2798 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2798 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
9 simp2 1134 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
10 simp3 1135 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
11 simp2 1134 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ CRing)
1211adantr 484 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ CRing)
13 simp3 1135 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
1413adantr 484 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑀𝐵)
15 simpr 488 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
16 pmatcollpw.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
17 pmatcollpw.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
181, 16, 17, 6, 8decpmatcl 21379 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑀𝐵𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
1912, 14, 15, 18syl3anc 1368 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
20193ad2ant1 1130 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
216, 7, 8, 9, 10, 20matecld 21038 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅))
22 crngring 19305 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
23223ad2ant2 1131 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
241ply1sca 20889 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
2523, 24syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 = (Scalar‘𝑃))
2625eqcomd 2804 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑃) = 𝑅)
2726fveq2d 6649 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
2827eleq2d 2875 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅)))
2928adantr 484 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅)))
30293ad2ant1 1130 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅)))
3121, 30mpbird 260 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)))
32 pmatcollpw.x . . . . . . 7 𝑋 = (var1𝑅)
33 eqid 2798 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
34 pmatcollpw.e . . . . . . 7 = (.g‘(mulGrp‘𝑃))
35 eqid 2798 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
361, 32, 33, 34, 35ply1moncl 20907 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
3723, 36sylan 583 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
38373ad2ant1 1130 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑛 𝑋) ∈ (Base‘𝑃))
39 eqid 2798 . . . . 5 (algSc‘𝑃) = (algSc‘𝑃)
40 eqid 2798 . . . . 5 (Scalar‘𝑃) = (Scalar‘𝑃)
41 eqid 2798 . . . . 5 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
42 eqid 2798 . . . . 5 (.r𝑃) = (.r𝑃)
43 eqid 2798 . . . . 5 ( ·𝑠𝑃) = ( ·𝑠𝑃)
4439, 40, 41, 35, 42, 43asclmul2 20576 . . . 4 ((𝑃 ∈ AssAlg ∧ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑛 𝑋) ∈ (Base‘𝑃)) → ((𝑛 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)))
455, 31, 38, 44syl3anc 1368 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑛 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)))
46 eqidd 2799 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))
47 oveq12 7144 . . . . . . . 8 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑎(𝑀 decompPMat 𝑛)𝑏))
4847fveq2d 6649 . . . . . . 7 ((𝑖 = 𝑎𝑗 = 𝑏) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)))
4948adantl 485 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)))
50 fvexd 6660 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)) ∈ V)
5146, 49, 9, 10, 50ovmpod 7282 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏) = ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)))
5251eqcomd 2804 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏)) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏))
5352oveq2d 7151 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑛 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑎(𝑀 decompPMat 𝑛)𝑏))) = ((𝑛 𝑋)(.r𝑃)(𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏)))
5445, 53eqtr3d 2835 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)) = ((𝑛 𝑋)(.r𝑃)(𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏)))
551ply1ring 20884 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5622, 55syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
57563ad2ant2 1131 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
5857adantr 484 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ Ring)
59583ad2ant1 1130 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → 𝑃 ∈ Ring)
60 simpl1 1188 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
6112, 22syl 17 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
62613ad2ant1 1130 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
63 simp2 1134 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
64 simp3 1135 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
65193ad2ant1 1130 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅)))
666, 7, 8, 63, 64, 65matecld 21038 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅))
671, 39, 7, 35ply1sclcl 20922 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) ∈ (Base‘𝑃))
6862, 66, 67syl2anc 587 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)) ∈ (Base‘𝑃))
6916, 35, 17, 60, 58, 68matbas2d 21035 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵)
7037, 69jca 515 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑋) ∈ (Base‘𝑃) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵))
71703ad2ant1 1130 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑛 𝑋) ∈ (Base‘𝑃) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵))
729, 10jca 515 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑁𝑏𝑁))
73 pmatcollpw.m . . . 4 = ( ·𝑠𝐶)
7416, 17, 35, 73, 42matvscacell 21048 . . 3 ((𝑃 ∈ Ring ∧ ((𝑛 𝑋) ∈ (Base‘𝑃) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) ∈ 𝐵) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎((𝑛 𝑋) (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = ((𝑛 𝑋)(.r𝑃)(𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏)))
7559, 71, 72, 74syl3anc 1368 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎((𝑛 𝑋) (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = ((𝑛 𝑋)(.r𝑃)(𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))𝑏)))
7623adantr 484 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
77 pmatcollpw.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
7877, 6, 8, 1, 39mat2pmatval 21336 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) → (𝑇‘(𝑀 decompPMat 𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))
7960, 76, 19, 78syl3anc 1368 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑀 decompPMat 𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))
8079eqcomd 2804 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))) = (𝑇‘(𝑀 decompPMat 𝑛)))
8180oveq2d 7151 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 𝑋) (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗)))) = ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))
8281oveqd 7152 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) → (𝑎((𝑛 𝑋) (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))
83823ad2ant1 1130 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → (𝑎((𝑛 𝑋) (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑀 decompPMat 𝑛)𝑗))))𝑏) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))
8454, 75, 833eqtr2d 2839 1 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ0) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎(𝑀 decompPMat 𝑛)𝑏)( ·𝑠𝑃)(𝑛 𝑋)) = (𝑎((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))𝑏))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Vcvv 3441  ‘cfv 6324  (class class class)co 7135   ∈ cmpo 7137  Fincfn 8494  ℕ0cn0 11887  Basecbs 16477  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  .gcmg 18219  mulGrpcmgp 19235  Ringcrg 19293  CRingccrg 19294  AssAlgcasa 20543  algSccascl 20545  var1cv1 20812  Poly1cpl1 20813   Mat cmat 21019   matToPolyMat cmat2pmat 21316   decompPMat cdecpmat 21374 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-ofr 7391  df-om 7563  df-1st 7673  df-2nd 7674  df-supp 7816  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-sup 8892  df-oi 8960  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-fz 12888  df-fzo 13031  df-seq 13367  df-hash 13689  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-pws 16717  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18220  df-subg 18271  df-ghm 18351  df-cntz 18442  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-subrg 19529  df-lmod 19632  df-lss 19700  df-sra 19940  df-rgmod 19941  df-dsmm 20425  df-frlm 20440  df-assa 20546  df-ascl 20548  df-psr 20598  df-mvr 20599  df-mpl 20600  df-opsr 20602  df-psr1 20816  df-vr1 20817  df-ply1 20818  df-coe1 20819  df-mat 21020  df-mat2pmat 21319  df-decpmat 21375 This theorem is referenced by:  pmatcollpw  21393
 Copyright terms: Public domain W3C validator