MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatvalel Structured version   Visualization version   GIF version

Theorem mat2pmatvalel 21425
Description: A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐵 = (Base‘𝐴)
mat2pmatfval.p 𝑃 = (Poly1𝑅)
mat2pmatfval.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
mat2pmatvalel (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → (𝑋(𝑇𝑀)𝑌) = (𝑆‘(𝑋𝑀𝑌)))

Proof of Theorem mat2pmatvalel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatfval.b . . . 4 𝐵 = (Base‘𝐴)
4 mat2pmatfval.p . . . 4 𝑃 = (Poly1𝑅)
5 mat2pmatfval.s . . . 4 𝑆 = (algSc‘𝑃)
61, 2, 3, 4, 5mat2pmatval 21424 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
76adantr 484 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
8 oveq12 7159 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝑀𝑦) = (𝑋𝑀𝑌))
98fveq2d 6662 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑆‘(𝑥𝑀𝑦)) = (𝑆‘(𝑋𝑀𝑌)))
109adantl 485 . 2 ((((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑆‘(𝑥𝑀𝑦)) = (𝑆‘(𝑋𝑀𝑌)))
11 simprl 770 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → 𝑋𝑁)
12 simprr 772 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → 𝑌𝑁)
13 fvexd 6673 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → (𝑆‘(𝑋𝑀𝑌)) ∈ V)
147, 10, 11, 12, 13ovmpod 7297 1 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → (𝑋(𝑇𝑀)𝑌) = (𝑆‘(𝑋𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3409  cfv 6335  (class class class)co 7150  cmpo 7152  Fincfn 8527  Basecbs 16541  algSccascl 20617  Poly1cpl1 20901   Mat cmat 21107   matToPolyMat cmat2pmat 21404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-mat2pmat 21407
This theorem is referenced by:  mat2pmatf1  21429  mat2pmat1  21432  mat2pmatlin  21435  m2cpm  21441  m2cpminvid  21453  monmatcollpw  21479  chpmat1dlem  21535  chpdmatlem2  21539  chpdmatlem3  21540
  Copyright terms: Public domain W3C validator