![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat2pmatvalel | Structured version Visualization version GIF version |
Description: A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019.) |
Ref | Expression |
---|---|
mat2pmatfval.t | β’ π = (π matToPolyMat π ) |
mat2pmatfval.a | β’ π΄ = (π Mat π ) |
mat2pmatfval.b | β’ π΅ = (Baseβπ΄) |
mat2pmatfval.p | β’ π = (Poly1βπ ) |
mat2pmatfval.s | β’ π = (algScβπ) |
Ref | Expression |
---|---|
mat2pmatvalel | β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β (π(πβπ)π) = (πβ(πππ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatfval.t | . . . 4 β’ π = (π matToPolyMat π ) | |
2 | mat2pmatfval.a | . . . 4 β’ π΄ = (π Mat π ) | |
3 | mat2pmatfval.b | . . . 4 β’ π΅ = (Baseβπ΄) | |
4 | mat2pmatfval.p | . . . 4 β’ π = (Poly1βπ ) | |
5 | mat2pmatfval.s | . . . 4 β’ π = (algScβπ) | |
6 | 1, 2, 3, 4, 5 | mat2pmatval 22639 | . . 3 β’ ((π β Fin β§ π β π β§ π β π΅) β (πβπ) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
7 | 6 | adantr 479 | . 2 β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β (πβπ) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
8 | oveq12 7422 | . . . 4 β’ ((π₯ = π β§ π¦ = π) β (π₯ππ¦) = (πππ)) | |
9 | 8 | fveq2d 6894 | . . 3 β’ ((π₯ = π β§ π¦ = π) β (πβ(π₯ππ¦)) = (πβ(πππ))) |
10 | 9 | adantl 480 | . 2 β’ ((((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β§ (π₯ = π β§ π¦ = π)) β (πβ(π₯ππ¦)) = (πβ(πππ))) |
11 | simprl 769 | . 2 β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β π β π) | |
12 | simprr 771 | . 2 β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β π β π) | |
13 | fvexd 6905 | . 2 β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β (πβ(πππ)) β V) | |
14 | 7, 10, 11, 12, 13 | ovmpod 7567 | 1 β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β (π(πβπ)π) = (πβ(πππ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 Vcvv 3463 βcfv 6543 (class class class)co 7413 β cmpo 7415 Fincfn 8957 Basecbs 17174 algSccascl 21785 Poly1cpl1 22099 Mat cmat 22320 matToPolyMat cmat2pmat 22619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7987 df-2nd 7988 df-mat2pmat 22622 |
This theorem is referenced by: mat2pmatf1 22644 mat2pmat1 22647 mat2pmatlin 22650 m2cpm 22656 m2cpminvid 22668 monmatcollpw 22694 chpmat1dlem 22750 chpdmatlem2 22754 chpdmatlem3 22755 |
Copyright terms: Public domain | W3C validator |