Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mat2pmatvalel | Structured version Visualization version GIF version |
Description: A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019.) |
Ref | Expression |
---|---|
mat2pmatfval.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
mat2pmatfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mat2pmatfval.b | ⊢ 𝐵 = (Base‘𝐴) |
mat2pmatfval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
mat2pmatfval.s | ⊢ 𝑆 = (algSc‘𝑃) |
Ref | Expression |
---|---|
mat2pmatvalel | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝑇‘𝑀)𝑌) = (𝑆‘(𝑋𝑀𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatfval.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
2 | mat2pmatfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | mat2pmatfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | mat2pmatfval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | mat2pmatfval.s | . . . 4 ⊢ 𝑆 = (algSc‘𝑃) | |
6 | 1, 2, 3, 4, 5 | mat2pmatval 21424 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦)))) |
7 | 6 | adantr 484 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑇‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦)))) |
8 | oveq12 7159 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝑀𝑦) = (𝑋𝑀𝑌)) | |
9 | 8 | fveq2d 6662 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑆‘(𝑥𝑀𝑦)) = (𝑆‘(𝑋𝑀𝑌))) |
10 | 9 | adantl 485 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑆‘(𝑥𝑀𝑦)) = (𝑆‘(𝑋𝑀𝑌))) |
11 | simprl 770 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑋 ∈ 𝑁) | |
12 | simprr 772 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑌 ∈ 𝑁) | |
13 | fvexd 6673 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑆‘(𝑋𝑀𝑌)) ∈ V) | |
14 | 7, 10, 11, 12, 13 | ovmpod 7297 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝑇‘𝑀)𝑌) = (𝑆‘(𝑋𝑀𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ‘cfv 6335 (class class class)co 7150 ∈ cmpo 7152 Fincfn 8527 Basecbs 16541 algSccascl 20617 Poly1cpl1 20901 Mat cmat 21107 matToPolyMat cmat2pmat 21404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-mat2pmat 21407 |
This theorem is referenced by: mat2pmatf1 21429 mat2pmat1 21432 mat2pmatlin 21435 m2cpm 21441 m2cpminvid 21453 monmatcollpw 21479 chpmat1dlem 21535 chpdmatlem2 21539 chpdmatlem3 21540 |
Copyright terms: Public domain | W3C validator |