![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat2pmatvalel | Structured version Visualization version GIF version |
Description: A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019.) |
Ref | Expression |
---|---|
mat2pmatfval.t | β’ π = (π matToPolyMat π ) |
mat2pmatfval.a | β’ π΄ = (π Mat π ) |
mat2pmatfval.b | β’ π΅ = (Baseβπ΄) |
mat2pmatfval.p | β’ π = (Poly1βπ ) |
mat2pmatfval.s | β’ π = (algScβπ) |
Ref | Expression |
---|---|
mat2pmatvalel | β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β (π(πβπ)π) = (πβ(πππ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatfval.t | . . . 4 β’ π = (π matToPolyMat π ) | |
2 | mat2pmatfval.a | . . . 4 β’ π΄ = (π Mat π ) | |
3 | mat2pmatfval.b | . . . 4 β’ π΅ = (Baseβπ΄) | |
4 | mat2pmatfval.p | . . . 4 β’ π = (Poly1βπ ) | |
5 | mat2pmatfval.s | . . . 4 β’ π = (algScβπ) | |
6 | 1, 2, 3, 4, 5 | mat2pmatval 22226 | . . 3 β’ ((π β Fin β§ π β π β§ π β π΅) β (πβπ) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
7 | 6 | adantr 482 | . 2 β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β (πβπ) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
8 | oveq12 7418 | . . . 4 β’ ((π₯ = π β§ π¦ = π) β (π₯ππ¦) = (πππ)) | |
9 | 8 | fveq2d 6896 | . . 3 β’ ((π₯ = π β§ π¦ = π) β (πβ(π₯ππ¦)) = (πβ(πππ))) |
10 | 9 | adantl 483 | . 2 β’ ((((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β§ (π₯ = π β§ π¦ = π)) β (πβ(π₯ππ¦)) = (πβ(πππ))) |
11 | simprl 770 | . 2 β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β π β π) | |
12 | simprr 772 | . 2 β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β π β π) | |
13 | fvexd 6907 | . 2 β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β (πβ(πππ)) β V) | |
14 | 7, 10, 11, 12, 13 | ovmpod 7560 | 1 β’ (((π β Fin β§ π β π β§ π β π΅) β§ (π β π β§ π β π)) β (π(πβπ)π) = (πβ(πππ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 Vcvv 3475 βcfv 6544 (class class class)co 7409 β cmpo 7411 Fincfn 8939 Basecbs 17144 algSccascl 21407 Poly1cpl1 21701 Mat cmat 21907 matToPolyMat cmat2pmat 22206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-mat2pmat 22209 |
This theorem is referenced by: mat2pmatf1 22231 mat2pmat1 22234 mat2pmatlin 22237 m2cpm 22243 m2cpminvid 22255 monmatcollpw 22281 chpmat1dlem 22337 chpdmatlem2 22341 chpdmatlem3 22342 |
Copyright terms: Public domain | W3C validator |