MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatvalel Structured version   Visualization version   GIF version

Theorem mat2pmatvalel 22640
Description: A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐡 = (Baseβ€˜π΄)
mat2pmatfval.p 𝑃 = (Poly1β€˜π‘…)
mat2pmatfval.s 𝑆 = (algScβ€˜π‘ƒ)
Assertion
Ref Expression
mat2pmatvalel (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ (𝑋(π‘‡β€˜π‘€)π‘Œ) = (π‘†β€˜(π‘‹π‘€π‘Œ)))

Proof of Theorem mat2pmatvalel
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatfval.b . . . 4 𝐡 = (Baseβ€˜π΄)
4 mat2pmatfval.p . . . 4 𝑃 = (Poly1β€˜π‘…)
5 mat2pmatfval.s . . . 4 𝑆 = (algScβ€˜π‘ƒ)
61, 2, 3, 4, 5mat2pmatval 22639 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ (π‘‡β€˜π‘€) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
76adantr 479 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ (π‘‡β€˜π‘€) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
8 oveq12 7422 . . . 4 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (π‘₯𝑀𝑦) = (π‘‹π‘€π‘Œ))
98fveq2d 6894 . . 3 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (π‘†β€˜(π‘₯𝑀𝑦)) = (π‘†β€˜(π‘‹π‘€π‘Œ)))
109adantl 480 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ (π‘†β€˜(π‘₯𝑀𝑦)) = (π‘†β€˜(π‘‹π‘€π‘Œ)))
11 simprl 769 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ 𝑋 ∈ 𝑁)
12 simprr 771 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ π‘Œ ∈ 𝑁)
13 fvexd 6905 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ (π‘†β€˜(π‘‹π‘€π‘Œ)) ∈ V)
147, 10, 11, 12, 13ovmpod 7567 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ (𝑋(π‘‡β€˜π‘€)π‘Œ) = (π‘†β€˜(π‘‹π‘€π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3463  β€˜cfv 6543  (class class class)co 7413   ∈ cmpo 7415  Fincfn 8957  Basecbs 17174  algSccascl 21785  Poly1cpl1 22099   Mat cmat 22320   matToPolyMat cmat2pmat 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7987  df-2nd 7988  df-mat2pmat 22622
This theorem is referenced by:  mat2pmatf1  22644  mat2pmat1  22647  mat2pmatlin  22650  m2cpm  22656  m2cpminvid  22668  monmatcollpw  22694  chpmat1dlem  22750  chpdmatlem2  22754  chpdmatlem3  22755
  Copyright terms: Public domain W3C validator