| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat2pmatvalel | Structured version Visualization version GIF version | ||
| Description: A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019.) |
| Ref | Expression |
|---|---|
| mat2pmatfval.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| mat2pmatfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mat2pmatfval.b | ⊢ 𝐵 = (Base‘𝐴) |
| mat2pmatfval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| mat2pmatfval.s | ⊢ 𝑆 = (algSc‘𝑃) |
| Ref | Expression |
|---|---|
| mat2pmatvalel | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝑇‘𝑀)𝑌) = (𝑆‘(𝑋𝑀𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat2pmatfval.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 2 | mat2pmatfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | mat2pmatfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | mat2pmatfval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | mat2pmatfval.s | . . . 4 ⊢ 𝑆 = (algSc‘𝑃) | |
| 6 | 1, 2, 3, 4, 5 | mat2pmatval 22639 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦)))) |
| 7 | 6 | adantr 480 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑇‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦)))) |
| 8 | oveq12 7355 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝑀𝑦) = (𝑋𝑀𝑌)) | |
| 9 | 8 | fveq2d 6826 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑆‘(𝑥𝑀𝑦)) = (𝑆‘(𝑋𝑀𝑌))) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑆‘(𝑥𝑀𝑦)) = (𝑆‘(𝑋𝑀𝑌))) |
| 11 | simprl 770 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑋 ∈ 𝑁) | |
| 12 | simprr 772 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑌 ∈ 𝑁) | |
| 13 | fvexd 6837 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑆‘(𝑋𝑀𝑌)) ∈ V) | |
| 14 | 7, 10, 11, 12, 13 | ovmpod 7498 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝑇‘𝑀)𝑌) = (𝑆‘(𝑋𝑀𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Fincfn 8869 Basecbs 17120 algSccascl 21789 Poly1cpl1 22089 Mat cmat 22322 matToPolyMat cmat2pmat 22619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-mat2pmat 22622 |
| This theorem is referenced by: mat2pmatf1 22644 mat2pmat1 22647 mat2pmatlin 22650 m2cpm 22656 m2cpminvid 22668 monmatcollpw 22694 chpmat1dlem 22750 chpdmatlem2 22754 chpdmatlem3 22755 |
| Copyright terms: Public domain | W3C validator |