| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat2pmatvalel | Structured version Visualization version GIF version | ||
| Description: A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019.) |
| Ref | Expression |
|---|---|
| mat2pmatfval.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| mat2pmatfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mat2pmatfval.b | ⊢ 𝐵 = (Base‘𝐴) |
| mat2pmatfval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| mat2pmatfval.s | ⊢ 𝑆 = (algSc‘𝑃) |
| Ref | Expression |
|---|---|
| mat2pmatvalel | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝑇‘𝑀)𝑌) = (𝑆‘(𝑋𝑀𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat2pmatfval.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 2 | mat2pmatfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | mat2pmatfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | mat2pmatfval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | mat2pmatfval.s | . . . 4 ⊢ 𝑆 = (algSc‘𝑃) | |
| 6 | 1, 2, 3, 4, 5 | mat2pmatval 22611 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦)))) |
| 7 | 6 | adantr 480 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑇‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑆‘(𝑥𝑀𝑦)))) |
| 8 | oveq12 7396 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝑀𝑦) = (𝑋𝑀𝑌)) | |
| 9 | 8 | fveq2d 6862 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑆‘(𝑥𝑀𝑦)) = (𝑆‘(𝑋𝑀𝑌))) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑆‘(𝑥𝑀𝑦)) = (𝑆‘(𝑋𝑀𝑌))) |
| 11 | simprl 770 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑋 ∈ 𝑁) | |
| 12 | simprr 772 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑌 ∈ 𝑁) | |
| 13 | fvexd 6873 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑆‘(𝑋𝑀𝑌)) ∈ V) | |
| 14 | 7, 10, 11, 12, 13 | ovmpod 7541 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝑇‘𝑀)𝑌) = (𝑆‘(𝑋𝑀𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 Fincfn 8918 Basecbs 17179 algSccascl 21761 Poly1cpl1 22061 Mat cmat 22294 matToPolyMat cmat2pmat 22591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-mat2pmat 22594 |
| This theorem is referenced by: mat2pmatf1 22616 mat2pmat1 22619 mat2pmatlin 22622 m2cpm 22628 m2cpminvid 22640 monmatcollpw 22666 chpmat1dlem 22722 chpdmatlem2 22726 chpdmatlem3 22727 |
| Copyright terms: Public domain | W3C validator |