MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatvalel Structured version   Visualization version   GIF version

Theorem mat2pmatvalel 22663
Description: A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐵 = (Base‘𝐴)
mat2pmatfval.p 𝑃 = (Poly1𝑅)
mat2pmatfval.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
mat2pmatvalel (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → (𝑋(𝑇𝑀)𝑌) = (𝑆‘(𝑋𝑀𝑌)))

Proof of Theorem mat2pmatvalel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatfval.b . . . 4 𝐵 = (Base‘𝐴)
4 mat2pmatfval.p . . . 4 𝑃 = (Poly1𝑅)
5 mat2pmatfval.s . . . 4 𝑆 = (algSc‘𝑃)
61, 2, 3, 4, 5mat2pmatval 22662 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
76adantr 480 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
8 oveq12 7414 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝑀𝑦) = (𝑋𝑀𝑌))
98fveq2d 6880 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑆‘(𝑥𝑀𝑦)) = (𝑆‘(𝑋𝑀𝑌)))
109adantl 481 . 2 ((((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑆‘(𝑥𝑀𝑦)) = (𝑆‘(𝑋𝑀𝑌)))
11 simprl 770 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → 𝑋𝑁)
12 simprr 772 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → 𝑌𝑁)
13 fvexd 6891 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → (𝑆‘(𝑋𝑀𝑌)) ∈ V)
147, 10, 11, 12, 13ovmpod 7559 1 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → (𝑋(𝑇𝑀)𝑌) = (𝑆‘(𝑋𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cfv 6531  (class class class)co 7405  cmpo 7407  Fincfn 8959  Basecbs 17228  algSccascl 21812  Poly1cpl1 22112   Mat cmat 22345   matToPolyMat cmat2pmat 22642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-mat2pmat 22645
This theorem is referenced by:  mat2pmatf1  22667  mat2pmat1  22670  mat2pmatlin  22673  m2cpm  22679  m2cpminvid  22691  monmatcollpw  22717  chpmat1dlem  22773  chpdmatlem2  22777  chpdmatlem3  22778
  Copyright terms: Public domain W3C validator