MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatvalel Structured version   Visualization version   GIF version

Theorem mat2pmatvalel 22227
Description: A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐡 = (Baseβ€˜π΄)
mat2pmatfval.p 𝑃 = (Poly1β€˜π‘…)
mat2pmatfval.s 𝑆 = (algScβ€˜π‘ƒ)
Assertion
Ref Expression
mat2pmatvalel (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ (𝑋(π‘‡β€˜π‘€)π‘Œ) = (π‘†β€˜(π‘‹π‘€π‘Œ)))

Proof of Theorem mat2pmatvalel
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatfval.b . . . 4 𝐡 = (Baseβ€˜π΄)
4 mat2pmatfval.p . . . 4 𝑃 = (Poly1β€˜π‘…)
5 mat2pmatfval.s . . . 4 𝑆 = (algScβ€˜π‘ƒ)
61, 2, 3, 4, 5mat2pmatval 22226 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ (π‘‡β€˜π‘€) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
76adantr 482 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ (π‘‡β€˜π‘€) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
8 oveq12 7418 . . . 4 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (π‘₯𝑀𝑦) = (π‘‹π‘€π‘Œ))
98fveq2d 6896 . . 3 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (π‘†β€˜(π‘₯𝑀𝑦)) = (π‘†β€˜(π‘‹π‘€π‘Œ)))
109adantl 483 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ (π‘†β€˜(π‘₯𝑀𝑦)) = (π‘†β€˜(π‘‹π‘€π‘Œ)))
11 simprl 770 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ 𝑋 ∈ 𝑁)
12 simprr 772 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ π‘Œ ∈ 𝑁)
13 fvexd 6907 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ (π‘†β€˜(π‘‹π‘€π‘Œ)) ∈ V)
147, 10, 11, 12, 13ovmpod 7560 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ (𝑋(π‘‡β€˜π‘€)π‘Œ) = (π‘†β€˜(π‘‹π‘€π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  Vcvv 3475  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  Fincfn 8939  Basecbs 17144  algSccascl 21407  Poly1cpl1 21701   Mat cmat 21907   matToPolyMat cmat2pmat 22206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-mat2pmat 22209
This theorem is referenced by:  mat2pmatf1  22231  mat2pmat1  22234  mat2pmatlin  22237  m2cpm  22243  m2cpminvid  22255  monmatcollpw  22281  chpmat1dlem  22337  chpdmatlem2  22341  chpdmatlem3  22342
  Copyright terms: Public domain W3C validator