MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatlin Structured version   Visualization version   GIF version

Theorem mat2pmatlin 22219
Description: The transformation of matrices into polynomial matrices is "linear", analogous to lmhmlin 20634. Since 𝐴 and 𝐶 have different scalar rings, 𝑇 cannot be a left module homomorphism as defined in df-lmhm 20621, see lmhmsca 20629. (Contributed by AV, 13-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
mat2pmatlin.k 𝐾 = (Base‘𝑅)
mat2pmatlin.s 𝑆 = (algSc‘𝑃)
mat2pmatlin.m · = ( ·𝑠𝐴)
mat2pmatlin.n × = ( ·𝑠𝐶)
Assertion
Ref Expression
mat2pmatlin (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)))

Proof of Theorem mat2pmatlin
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing)
2 mat2pmatbas.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
32ply1assa 21705 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
4 mat2pmatlin.s . . . . . . . . . . 11 𝑆 = (algSc‘𝑃)
5 eqid 2733 . . . . . . . . . . 11 (Scalar‘𝑃) = (Scalar‘𝑃)
64, 5asclrhm 21426 . . . . . . . . . 10 (𝑃 ∈ AssAlg → 𝑆 ∈ ((Scalar‘𝑃) RingHom 𝑃))
71, 3, 63syl 18 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ ((Scalar‘𝑃) RingHom 𝑃))
82ply1sca 21757 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
98adantl 483 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
109oveq1d 7419 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
117, 10eleqtrrd 2837 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (𝑅 RingHom 𝑃))
1211adantr 482 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑆 ∈ (𝑅 RingHom 𝑃))
1312adantr 482 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑆 ∈ (𝑅 RingHom 𝑃))
14 mat2pmatlin.k . . . . . . . . . 10 𝐾 = (Base‘𝑅)
1514eleq2i 2826 . . . . . . . . 9 (𝑋𝐾𝑋 ∈ (Base‘𝑅))
1615biimpi 215 . . . . . . . 8 (𝑋𝐾𝑋 ∈ (Base‘𝑅))
1716adantr 482 . . . . . . 7 ((𝑋𝐾𝑌𝐵) → 𝑋 ∈ (Base‘𝑅))
1817ad2antlr 726 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑋 ∈ (Base‘𝑅))
19 mat2pmatbas.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
20 eqid 2733 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
21 mat2pmatbas.b . . . . . . 7 𝐵 = (Base‘𝐴)
22 simprl 770 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
23 simpr 486 . . . . . . . 8 ((𝑖𝑁𝑗𝑁) → 𝑗𝑁)
2423adantl 483 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
25 simplrr 777 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑌𝐵)
2619, 20, 21, 22, 24, 25matecld 21910 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑌𝑗) ∈ (Base‘𝑅))
27 eqid 2733 . . . . . . 7 (.r𝑅) = (.r𝑅)
28 eqid 2733 . . . . . . 7 (.r𝑃) = (.r𝑃)
2920, 27, 28rhmmul 20253 . . . . . 6 ((𝑆 ∈ (𝑅 RingHom 𝑃) ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑖𝑌𝑗) ∈ (Base‘𝑅)) → (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
3013, 18, 26, 29syl3anc 1372 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
31 crngring 20059 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3231ad2antlr 726 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑅 ∈ Ring)
3332adantr 482 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
34 simpr 486 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋𝐾𝑌𝐵))
3534adantr 482 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋𝐾𝑌𝐵))
36 simpr 486 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
37 mat2pmatlin.m . . . . . . . 8 · = ( ·𝑠𝐴)
3819, 21, 14, 37, 27matvscacell 21920 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋 · 𝑌)𝑗) = (𝑋(.r𝑅)(𝑖𝑌𝑗)))
3933, 35, 36, 38syl3anc 1372 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋 · 𝑌)𝑗) = (𝑋(.r𝑅)(𝑖𝑌𝑗)))
4039fveq2d 6892 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)) = (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))))
4131anim2i 618 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
42 simpr 486 . . . . . . . . 9 ((𝑋𝐾𝑌𝐵) → 𝑌𝐵)
4341, 42anim12i 614 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵))
44 df-3an 1090 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵))
4543, 44sylibr 233 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵))
46 mat2pmatbas.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
4746, 19, 21, 2, 4mat2pmatvalel 22209 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑌)𝑗) = (𝑆‘(𝑖𝑌𝑗)))
4845, 47sylan 581 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑌)𝑗) = (𝑆‘(𝑖𝑌𝑗)))
4948oveq2d 7420 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
5030, 40, 493eqtr4d 2783 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
51 simpll 766 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑁 ∈ Fin)
5251adantr 482 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
5314, 19, 21, 37matvscl 21915 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋 · 𝑌) ∈ 𝐵)
5441, 53sylan 581 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋 · 𝑌) ∈ 𝐵)
5554adantr 482 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋 · 𝑌) ∈ 𝐵)
5646, 19, 21, 2, 4mat2pmatvalel 22209 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)))
5752, 33, 55, 36, 56syl31anc 1374 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)))
582ply1ring 21752 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5931, 58syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
6059ad2antlr 726 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑃 ∈ Ring)
6160adantr 482 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑃 ∈ Ring)
6231adantl 483 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
63 simpl 484 . . . . . . . 8 ((𝑋𝐾𝑌𝐵) → 𝑋𝐾)
64 eqid 2733 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
652, 4, 14, 64ply1sclcl 21790 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐾) → (𝑆𝑋) ∈ (Base‘𝑃))
6662, 63, 65syl2an 597 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑆𝑋) ∈ (Base‘𝑃))
67 mat2pmatbas.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
68 mat2pmatbas0.h . . . . . . . . 9 𝐻 = (Base‘𝐶)
6946, 19, 21, 2, 67, 68mat2pmatbas0 22211 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) → (𝑇𝑌) ∈ 𝐻)
7045, 69syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇𝑌) ∈ 𝐻)
7166, 70jca 513 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻))
7271adantr 482 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻))
73 mat2pmatlin.n . . . . . 6 × = ( ·𝑠𝐶)
7467, 68, 64, 73, 28matvscacell 21920 . . . . 5 ((𝑃 ∈ Ring ∧ ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
7561, 72, 36, 74syl3anc 1372 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
7650, 57, 753eqtr4d 2783 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗))
7776ralrimivva 3201 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗))
7846, 19, 21, 2, 67, 68mat2pmatbas0 22211 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝐵) → (𝑇‘(𝑋 · 𝑌)) ∈ 𝐻)
7951, 32, 54, 78syl3anc 1372 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) ∈ 𝐻)
8064, 67, 68, 73matvscl 21915 . . . 4 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻)) → ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻)
8151, 60, 71, 80syl21anc 837 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻)
8267, 68eqmat 21908 . . 3 (((𝑇‘(𝑋 · 𝑌)) ∈ 𝐻 ∧ ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻) → ((𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗)))
8379, 81, 82syl2anc 585 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗)))
8477, 83mpbird 257 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  cfv 6540  (class class class)co 7404  Fincfn 8935  Basecbs 17140  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  Ringcrg 20047  CRingccrg 20048   RingHom crh 20237  AssAlgcasa 21389  algSccascl 21391  Poly1cpl1 21683   Mat cmat 21889   matToPolyMat cmat2pmat 22188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-ofr 7666  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-cring 20050  df-rnghom 20240  df-subrg 20349  df-lmod 20461  df-lss 20531  df-sra 20773  df-rgmod 20774  df-dsmm 21271  df-frlm 21286  df-assa 21392  df-ascl 21394  df-psr 21444  df-mpl 21446  df-opsr 21448  df-psr1 21686  df-ply1 21688  df-mat 21890  df-mat2pmat 22191
This theorem is referenced by:  cpmidgsumm2pm  22353
  Copyright terms: Public domain W3C validator