MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatlin Structured version   Visualization version   GIF version

Theorem mat2pmatlin 22629
Description: The transformation of matrices into polynomial matrices is "linear", analogous to lmhmlin 20949. Since 𝐴 and 𝐶 have different scalar rings, 𝑇 cannot be a left module homomorphism as defined in df-lmhm 20936, see lmhmsca 20944. (Contributed by AV, 13-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
mat2pmatlin.k 𝐾 = (Base‘𝑅)
mat2pmatlin.s 𝑆 = (algSc‘𝑃)
mat2pmatlin.m · = ( ·𝑠𝐴)
mat2pmatlin.n × = ( ·𝑠𝐶)
Assertion
Ref Expression
mat2pmatlin (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)))

Proof of Theorem mat2pmatlin
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing)
2 mat2pmatbas.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
32ply1assa 22091 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
4 mat2pmatlin.s . . . . . . . . . . 11 𝑆 = (algSc‘𝑃)
5 eqid 2730 . . . . . . . . . . 11 (Scalar‘𝑃) = (Scalar‘𝑃)
64, 5asclrhm 21806 . . . . . . . . . 10 (𝑃 ∈ AssAlg → 𝑆 ∈ ((Scalar‘𝑃) RingHom 𝑃))
71, 3, 63syl 18 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ ((Scalar‘𝑃) RingHom 𝑃))
82ply1sca 22144 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
98adantl 481 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
109oveq1d 7405 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
117, 10eleqtrrd 2832 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (𝑅 RingHom 𝑃))
1211adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑆 ∈ (𝑅 RingHom 𝑃))
1312adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑆 ∈ (𝑅 RingHom 𝑃))
14 mat2pmatlin.k . . . . . . . . . 10 𝐾 = (Base‘𝑅)
1514eleq2i 2821 . . . . . . . . 9 (𝑋𝐾𝑋 ∈ (Base‘𝑅))
1615biimpi 216 . . . . . . . 8 (𝑋𝐾𝑋 ∈ (Base‘𝑅))
1716adantr 480 . . . . . . 7 ((𝑋𝐾𝑌𝐵) → 𝑋 ∈ (Base‘𝑅))
1817ad2antlr 727 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑋 ∈ (Base‘𝑅))
19 mat2pmatbas.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
20 eqid 2730 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
21 mat2pmatbas.b . . . . . . 7 𝐵 = (Base‘𝐴)
22 simprl 770 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
23 simpr 484 . . . . . . . 8 ((𝑖𝑁𝑗𝑁) → 𝑗𝑁)
2423adantl 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
25 simplrr 777 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑌𝐵)
2619, 20, 21, 22, 24, 25matecld 22320 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑌𝑗) ∈ (Base‘𝑅))
27 eqid 2730 . . . . . . 7 (.r𝑅) = (.r𝑅)
28 eqid 2730 . . . . . . 7 (.r𝑃) = (.r𝑃)
2920, 27, 28rhmmul 20402 . . . . . 6 ((𝑆 ∈ (𝑅 RingHom 𝑃) ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑖𝑌𝑗) ∈ (Base‘𝑅)) → (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
3013, 18, 26, 29syl3anc 1373 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
31 crngring 20161 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3231ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑅 ∈ Ring)
3332adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
34 simpr 484 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋𝐾𝑌𝐵))
3534adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋𝐾𝑌𝐵))
36 simpr 484 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
37 mat2pmatlin.m . . . . . . . 8 · = ( ·𝑠𝐴)
3819, 21, 14, 37, 27matvscacell 22330 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋 · 𝑌)𝑗) = (𝑋(.r𝑅)(𝑖𝑌𝑗)))
3933, 35, 36, 38syl3anc 1373 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋 · 𝑌)𝑗) = (𝑋(.r𝑅)(𝑖𝑌𝑗)))
4039fveq2d 6865 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)) = (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))))
4131anim2i 617 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
42 simpr 484 . . . . . . . . 9 ((𝑋𝐾𝑌𝐵) → 𝑌𝐵)
4341, 42anim12i 613 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵))
44 df-3an 1088 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵))
4543, 44sylibr 234 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵))
46 mat2pmatbas.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
4746, 19, 21, 2, 4mat2pmatvalel 22619 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑌)𝑗) = (𝑆‘(𝑖𝑌𝑗)))
4845, 47sylan 580 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑌)𝑗) = (𝑆‘(𝑖𝑌𝑗)))
4948oveq2d 7406 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
5030, 40, 493eqtr4d 2775 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
51 simpll 766 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑁 ∈ Fin)
5251adantr 480 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
5314, 19, 21, 37matvscl 22325 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋 · 𝑌) ∈ 𝐵)
5441, 53sylan 580 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋 · 𝑌) ∈ 𝐵)
5554adantr 480 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋 · 𝑌) ∈ 𝐵)
5646, 19, 21, 2, 4mat2pmatvalel 22619 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)))
5752, 33, 55, 36, 56syl31anc 1375 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)))
582ply1ring 22139 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5931, 58syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
6059ad2antlr 727 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑃 ∈ Ring)
6160adantr 480 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑃 ∈ Ring)
6231adantl 481 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
63 simpl 482 . . . . . . . 8 ((𝑋𝐾𝑌𝐵) → 𝑋𝐾)
64 eqid 2730 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
652, 4, 14, 64ply1sclcl 22179 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐾) → (𝑆𝑋) ∈ (Base‘𝑃))
6662, 63, 65syl2an 596 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑆𝑋) ∈ (Base‘𝑃))
67 mat2pmatbas.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
68 mat2pmatbas0.h . . . . . . . . 9 𝐻 = (Base‘𝐶)
6946, 19, 21, 2, 67, 68mat2pmatbas0 22621 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) → (𝑇𝑌) ∈ 𝐻)
7045, 69syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇𝑌) ∈ 𝐻)
7166, 70jca 511 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻))
7271adantr 480 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻))
73 mat2pmatlin.n . . . . . 6 × = ( ·𝑠𝐶)
7467, 68, 64, 73, 28matvscacell 22330 . . . . 5 ((𝑃 ∈ Ring ∧ ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
7561, 72, 36, 74syl3anc 1373 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
7650, 57, 753eqtr4d 2775 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗))
7776ralrimivva 3181 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗))
7846, 19, 21, 2, 67, 68mat2pmatbas0 22621 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝐵) → (𝑇‘(𝑋 · 𝑌)) ∈ 𝐻)
7951, 32, 54, 78syl3anc 1373 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) ∈ 𝐻)
8064, 67, 68, 73matvscl 22325 . . . 4 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻)) → ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻)
8151, 60, 71, 80syl21anc 837 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻)
8267, 68eqmat 22318 . . 3 (((𝑇‘(𝑋 · 𝑌)) ∈ 𝐻 ∧ ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻) → ((𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗)))
8379, 81, 82syl2anc 584 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗)))
8477, 83mpbird 257 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  AssAlgcasa 21766  algSccascl 21768  Poly1cpl1 22068   Mat cmat 22301   matToPolyMat cmat2pmat 22598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-assa 21769  df-ascl 21771  df-psr 21825  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-ply1 22073  df-mat 22302  df-mat2pmat 22601
This theorem is referenced by:  cpmidgsumm2pm  22763
  Copyright terms: Public domain W3C validator