Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing) |
2 | | mat2pmatbas.p |
. . . . . . . . . . 11
⊢ 𝑃 = (Poly1‘𝑅) |
3 | 2 | ply1assa 21120 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑃 ∈ AssAlg) |
4 | | mat2pmatlin.s |
. . . . . . . . . . 11
⊢ 𝑆 = (algSc‘𝑃) |
5 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
6 | 4, 5 | asclrhm 20850 |
. . . . . . . . . 10
⊢ (𝑃 ∈ AssAlg → 𝑆 ∈ ((Scalar‘𝑃) RingHom 𝑃)) |
7 | 1, 3, 6 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ ((Scalar‘𝑃) RingHom 𝑃)) |
8 | 2 | ply1sca 21174 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃)) |
9 | 8 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃)) |
10 | 9 | oveq1d 7228 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃)) |
11 | 7, 10 | eleqtrrd 2841 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (𝑅 RingHom 𝑃)) |
12 | 11 | adantr 484 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → 𝑆 ∈ (𝑅 RingHom 𝑃)) |
13 | 12 | adantr 484 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑆 ∈ (𝑅 RingHom 𝑃)) |
14 | | mat2pmatlin.k |
. . . . . . . . . 10
⊢ 𝐾 = (Base‘𝑅) |
15 | 14 | eleq2i 2829 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐾 ↔ 𝑋 ∈ (Base‘𝑅)) |
16 | 15 | biimpi 219 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐾 → 𝑋 ∈ (Base‘𝑅)) |
17 | 16 | adantr 484 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑅)) |
18 | 17 | ad2antlr 727 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑋 ∈ (Base‘𝑅)) |
19 | | mat2pmatbas.a |
. . . . . . 7
⊢ 𝐴 = (𝑁 Mat 𝑅) |
20 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
21 | | mat2pmatbas.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐴) |
22 | | simprl 771 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
23 | | simpr 488 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
24 | 23 | adantl 485 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
25 | | simplrr 778 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑌 ∈ 𝐵) |
26 | 19, 20, 21, 22, 24, 25 | matecld 21323 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑌𝑗) ∈ (Base‘𝑅)) |
27 | | eqid 2737 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
28 | | eqid 2737 |
. . . . . . 7
⊢
(.r‘𝑃) = (.r‘𝑃) |
29 | 20, 27, 28 | rhmmul 19747 |
. . . . . 6
⊢ ((𝑆 ∈ (𝑅 RingHom 𝑃) ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑖𝑌𝑗) ∈ (Base‘𝑅)) → (𝑆‘(𝑋(.r‘𝑅)(𝑖𝑌𝑗))) = ((𝑆‘𝑋)(.r‘𝑃)(𝑆‘(𝑖𝑌𝑗)))) |
30 | 13, 18, 26, 29 | syl3anc 1373 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑆‘(𝑋(.r‘𝑅)(𝑖𝑌𝑗))) = ((𝑆‘𝑋)(.r‘𝑃)(𝑆‘(𝑖𝑌𝑗)))) |
31 | | crngring 19574 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
32 | 31 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → 𝑅 ∈ Ring) |
33 | 32 | adantr 484 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
34 | | simpr 488 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) |
35 | 34 | adantr 484 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) |
36 | | simpr 488 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
37 | | mat2pmatlin.m |
. . . . . . . 8
⊢ · = (
·𝑠 ‘𝐴) |
38 | 19, 21, 14, 37, 27 | matvscacell 21333 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑋 · 𝑌)𝑗) = (𝑋(.r‘𝑅)(𝑖𝑌𝑗))) |
39 | 33, 35, 36, 38 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑋 · 𝑌)𝑗) = (𝑋(.r‘𝑅)(𝑖𝑌𝑗))) |
40 | 39 | fveq2d 6721 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)) = (𝑆‘(𝑋(.r‘𝑅)(𝑖𝑌𝑗)))) |
41 | 31 | anim2i 620 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
42 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
43 | 41, 42 | anim12i 616 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌 ∈ 𝐵)) |
44 | | df-3an 1091 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌 ∈ 𝐵)) |
45 | 43, 44 | sylibr 237 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵)) |
46 | | mat2pmatbas.t |
. . . . . . . 8
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
47 | 46, 19, 21, 2, 4 | mat2pmatvalel 21622 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘𝑌)𝑗) = (𝑆‘(𝑖𝑌𝑗))) |
48 | 45, 47 | sylan 583 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘𝑌)𝑗) = (𝑆‘(𝑖𝑌𝑗))) |
49 | 48 | oveq2d 7229 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑆‘𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑌)𝑗)) = ((𝑆‘𝑋)(.r‘𝑃)(𝑆‘(𝑖𝑌𝑗)))) |
50 | 30, 40, 49 | 3eqtr4d 2787 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)) = ((𝑆‘𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑌)𝑗))) |
51 | | simpll 767 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → 𝑁 ∈ Fin) |
52 | 51 | adantr 484 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) |
53 | 14, 19, 21, 37 | matvscl 21328 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → (𝑋 · 𝑌) ∈ 𝐵) |
54 | 41, 53 | sylan 583 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → (𝑋 · 𝑌) ∈ 𝐵) |
55 | 54 | adantr 484 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑋 · 𝑌) ∈ 𝐵) |
56 | 46, 19, 21, 2, 4 | mat2pmatvalel 21622 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝐵) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑆‘(𝑖(𝑋 · 𝑌)𝑗))) |
57 | 52, 33, 55, 36, 56 | syl31anc 1375 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑆‘(𝑖(𝑋 · 𝑌)𝑗))) |
58 | 2 | ply1ring 21169 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
59 | 31, 58 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
60 | 59 | ad2antlr 727 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → 𝑃 ∈ Ring) |
61 | 60 | adantr 484 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑃 ∈ Ring) |
62 | 31 | adantl 485 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
63 | | simpl 486 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐾) |
64 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘𝑃) |
65 | 2, 4, 14, 64 | ply1sclcl 21207 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑆‘𝑋) ∈ (Base‘𝑃)) |
66 | 62, 63, 65 | syl2an 599 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → (𝑆‘𝑋) ∈ (Base‘𝑃)) |
67 | | mat2pmatbas.c |
. . . . . . . . 9
⊢ 𝐶 = (𝑁 Mat 𝑃) |
68 | | mat2pmatbas0.h |
. . . . . . . . 9
⊢ 𝐻 = (Base‘𝐶) |
69 | 46, 19, 21, 2, 67, 68 | mat2pmatbas0 21624 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → (𝑇‘𝑌) ∈ 𝐻) |
70 | 45, 69 | syl 17 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → (𝑇‘𝑌) ∈ 𝐻) |
71 | 66, 70 | jca 515 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → ((𝑆‘𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘𝑌) ∈ 𝐻)) |
72 | 71 | adantr 484 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑆‘𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘𝑌) ∈ 𝐻)) |
73 | | mat2pmatlin.n |
. . . . . 6
⊢ × = (
·𝑠 ‘𝐶) |
74 | 67, 68, 64, 73, 28 | matvscacell 21333 |
. . . . 5
⊢ ((𝑃 ∈ Ring ∧ ((𝑆‘𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘𝑌) ∈ 𝐻) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖((𝑆‘𝑋) × (𝑇‘𝑌))𝑗) = ((𝑆‘𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑌)𝑗))) |
75 | 61, 72, 36, 74 | syl3anc 1373 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖((𝑆‘𝑋) × (𝑇‘𝑌))𝑗) = ((𝑆‘𝑋)(.r‘𝑃)(𝑖(𝑇‘𝑌)𝑗))) |
76 | 50, 57, 75 | 3eqtr4d 2787 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆‘𝑋) × (𝑇‘𝑌))𝑗)) |
77 | 76 | ralrimivva 3112 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆‘𝑋) × (𝑇‘𝑌))𝑗)) |
78 | 46, 19, 21, 2, 67, 68 | mat2pmatbas0 21624 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝐵) → (𝑇‘(𝑋 · 𝑌)) ∈ 𝐻) |
79 | 51, 32, 54, 78 | syl3anc 1373 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → (𝑇‘(𝑋 · 𝑌)) ∈ 𝐻) |
80 | 64, 67, 68, 73 | matvscl 21328 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑆‘𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘𝑌) ∈ 𝐻)) → ((𝑆‘𝑋) × (𝑇‘𝑌)) ∈ 𝐻) |
81 | 51, 60, 71, 80 | syl21anc 838 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → ((𝑆‘𝑋) × (𝑇‘𝑌)) ∈ 𝐻) |
82 | 67, 68 | eqmat 21321 |
. . 3
⊢ (((𝑇‘(𝑋 · 𝑌)) ∈ 𝐻 ∧ ((𝑆‘𝑋) × (𝑇‘𝑌)) ∈ 𝐻) → ((𝑇‘(𝑋 · 𝑌)) = ((𝑆‘𝑋) × (𝑇‘𝑌)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆‘𝑋) × (𝑇‘𝑌))𝑗))) |
83 | 79, 81, 82 | syl2anc 587 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → ((𝑇‘(𝑋 · 𝑌)) = ((𝑆‘𝑋) × (𝑇‘𝑌)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆‘𝑋) × (𝑇‘𝑌))𝑗))) |
84 | 77, 83 | mpbird 260 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵)) → (𝑇‘(𝑋 · 𝑌)) = ((𝑆‘𝑋) × (𝑇‘𝑌))) |