MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatlin Structured version   Visualization version   GIF version

Theorem mat2pmatlin 21632
Description: The transformation of matrices into polynomial matrices is "linear", analogous to lmhmlin 20072. Since 𝐴 and 𝐶 have different scalar rings, 𝑇 cannot be a left module homomorphism as defined in df-lmhm 20059, see lmhmsca 20067. (Contributed by AV, 13-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
mat2pmatlin.k 𝐾 = (Base‘𝑅)
mat2pmatlin.s 𝑆 = (algSc‘𝑃)
mat2pmatlin.m · = ( ·𝑠𝐴)
mat2pmatlin.n × = ( ·𝑠𝐶)
Assertion
Ref Expression
mat2pmatlin (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)))

Proof of Theorem mat2pmatlin
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing)
2 mat2pmatbas.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
32ply1assa 21120 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
4 mat2pmatlin.s . . . . . . . . . . 11 𝑆 = (algSc‘𝑃)
5 eqid 2737 . . . . . . . . . . 11 (Scalar‘𝑃) = (Scalar‘𝑃)
64, 5asclrhm 20850 . . . . . . . . . 10 (𝑃 ∈ AssAlg → 𝑆 ∈ ((Scalar‘𝑃) RingHom 𝑃))
71, 3, 63syl 18 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ ((Scalar‘𝑃) RingHom 𝑃))
82ply1sca 21174 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
98adantl 485 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
109oveq1d 7228 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
117, 10eleqtrrd 2841 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (𝑅 RingHom 𝑃))
1211adantr 484 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑆 ∈ (𝑅 RingHom 𝑃))
1312adantr 484 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑆 ∈ (𝑅 RingHom 𝑃))
14 mat2pmatlin.k . . . . . . . . . 10 𝐾 = (Base‘𝑅)
1514eleq2i 2829 . . . . . . . . 9 (𝑋𝐾𝑋 ∈ (Base‘𝑅))
1615biimpi 219 . . . . . . . 8 (𝑋𝐾𝑋 ∈ (Base‘𝑅))
1716adantr 484 . . . . . . 7 ((𝑋𝐾𝑌𝐵) → 𝑋 ∈ (Base‘𝑅))
1817ad2antlr 727 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑋 ∈ (Base‘𝑅))
19 mat2pmatbas.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
20 eqid 2737 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
21 mat2pmatbas.b . . . . . . 7 𝐵 = (Base‘𝐴)
22 simprl 771 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
23 simpr 488 . . . . . . . 8 ((𝑖𝑁𝑗𝑁) → 𝑗𝑁)
2423adantl 485 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
25 simplrr 778 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑌𝐵)
2619, 20, 21, 22, 24, 25matecld 21323 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑌𝑗) ∈ (Base‘𝑅))
27 eqid 2737 . . . . . . 7 (.r𝑅) = (.r𝑅)
28 eqid 2737 . . . . . . 7 (.r𝑃) = (.r𝑃)
2920, 27, 28rhmmul 19747 . . . . . 6 ((𝑆 ∈ (𝑅 RingHom 𝑃) ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑖𝑌𝑗) ∈ (Base‘𝑅)) → (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
3013, 18, 26, 29syl3anc 1373 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
31 crngring 19574 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3231ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑅 ∈ Ring)
3332adantr 484 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
34 simpr 488 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋𝐾𝑌𝐵))
3534adantr 484 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋𝐾𝑌𝐵))
36 simpr 488 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
37 mat2pmatlin.m . . . . . . . 8 · = ( ·𝑠𝐴)
3819, 21, 14, 37, 27matvscacell 21333 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋 · 𝑌)𝑗) = (𝑋(.r𝑅)(𝑖𝑌𝑗)))
3933, 35, 36, 38syl3anc 1373 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋 · 𝑌)𝑗) = (𝑋(.r𝑅)(𝑖𝑌𝑗)))
4039fveq2d 6721 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)) = (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))))
4131anim2i 620 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
42 simpr 488 . . . . . . . . 9 ((𝑋𝐾𝑌𝐵) → 𝑌𝐵)
4341, 42anim12i 616 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵))
44 df-3an 1091 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵))
4543, 44sylibr 237 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵))
46 mat2pmatbas.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
4746, 19, 21, 2, 4mat2pmatvalel 21622 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑌)𝑗) = (𝑆‘(𝑖𝑌𝑗)))
4845, 47sylan 583 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑌)𝑗) = (𝑆‘(𝑖𝑌𝑗)))
4948oveq2d 7229 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
5030, 40, 493eqtr4d 2787 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
51 simpll 767 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑁 ∈ Fin)
5251adantr 484 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
5314, 19, 21, 37matvscl 21328 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋 · 𝑌) ∈ 𝐵)
5441, 53sylan 583 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋 · 𝑌) ∈ 𝐵)
5554adantr 484 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋 · 𝑌) ∈ 𝐵)
5646, 19, 21, 2, 4mat2pmatvalel 21622 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)))
5752, 33, 55, 36, 56syl31anc 1375 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)))
582ply1ring 21169 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5931, 58syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
6059ad2antlr 727 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑃 ∈ Ring)
6160adantr 484 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑃 ∈ Ring)
6231adantl 485 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
63 simpl 486 . . . . . . . 8 ((𝑋𝐾𝑌𝐵) → 𝑋𝐾)
64 eqid 2737 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
652, 4, 14, 64ply1sclcl 21207 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐾) → (𝑆𝑋) ∈ (Base‘𝑃))
6662, 63, 65syl2an 599 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑆𝑋) ∈ (Base‘𝑃))
67 mat2pmatbas.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
68 mat2pmatbas0.h . . . . . . . . 9 𝐻 = (Base‘𝐶)
6946, 19, 21, 2, 67, 68mat2pmatbas0 21624 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) → (𝑇𝑌) ∈ 𝐻)
7045, 69syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇𝑌) ∈ 𝐻)
7166, 70jca 515 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻))
7271adantr 484 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻))
73 mat2pmatlin.n . . . . . 6 × = ( ·𝑠𝐶)
7467, 68, 64, 73, 28matvscacell 21333 . . . . 5 ((𝑃 ∈ Ring ∧ ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
7561, 72, 36, 74syl3anc 1373 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
7650, 57, 753eqtr4d 2787 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗))
7776ralrimivva 3112 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗))
7846, 19, 21, 2, 67, 68mat2pmatbas0 21624 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝐵) → (𝑇‘(𝑋 · 𝑌)) ∈ 𝐻)
7951, 32, 54, 78syl3anc 1373 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) ∈ 𝐻)
8064, 67, 68, 73matvscl 21328 . . . 4 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻)) → ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻)
8151, 60, 71, 80syl21anc 838 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻)
8267, 68eqmat 21321 . . 3 (((𝑇‘(𝑋 · 𝑌)) ∈ 𝐻 ∧ ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻) → ((𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗)))
8379, 81, 82syl2anc 587 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗)))
8477, 83mpbird 260 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  cfv 6380  (class class class)co 7213  Fincfn 8626  Basecbs 16760  .rcmulr 16803  Scalarcsca 16805   ·𝑠 cvsca 16806  Ringcrg 19562  CRingccrg 19563   RingHom crh 19732  AssAlgcasa 20812  algSccascl 20814  Poly1cpl1 21098   Mat cmat 21304   matToPolyMat cmat2pmat 21601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-ot 4550  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-hom 16826  df-cco 16827  df-0g 16946  df-gsum 16947  df-prds 16952  df-pws 16954  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-rnghom 19735  df-subrg 19798  df-lmod 19901  df-lss 19969  df-sra 20209  df-rgmod 20210  df-dsmm 20694  df-frlm 20709  df-assa 20815  df-ascl 20817  df-psr 20868  df-mpl 20870  df-opsr 20872  df-psr1 21101  df-ply1 21103  df-mat 21305  df-mat2pmat 21604
This theorem is referenced by:  cpmidgsumm2pm  21766
  Copyright terms: Public domain W3C validator