MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragtrivb Structured version   Visualization version   GIF version

Theorem ragtrivb 26793
Description: Trivial right angle. Theorem 8.5 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
Assertion
Ref Expression
ragtrivb (𝜑 → ⟨“𝐴𝐵𝐵”⟩ ∈ (∟G‘𝐺))

Proof of Theorem ragtrivb
StepHypRef Expression
1 israg.p . . . . 5 𝑃 = (Base‘𝐺)
2 israg.d . . . . 5 = (dist‘𝐺)
3 israg.i . . . . 5 𝐼 = (Itv‘𝐺)
4 israg.l . . . . 5 𝐿 = (LineG‘𝐺)
5 israg.s . . . . 5 𝑆 = (pInvG‘𝐺)
6 israg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 israg.b . . . . 5 (𝜑𝐵𝑃)
8 eqid 2737 . . . . 5 (𝑆𝐵) = (𝑆𝐵)
91, 2, 3, 4, 5, 6, 7, 8mircinv 26759 . . . 4 (𝜑 → ((𝑆𝐵)‘𝐵) = 𝐵)
109oveq2d 7229 . . 3 (𝜑 → (𝐴 ((𝑆𝐵)‘𝐵)) = (𝐴 𝐵))
1110eqcomd 2743 . 2 (𝜑 → (𝐴 𝐵) = (𝐴 ((𝑆𝐵)‘𝐵)))
12 israg.a . . 3 (𝜑𝐴𝑃)
131, 2, 3, 4, 5, 6, 12, 7, 7israg 26788 . 2 (𝜑 → (⟨“𝐴𝐵𝐵”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐵) = (𝐴 ((𝑆𝐵)‘𝐵))))
1411, 13mpbird 260 1 (𝜑 → ⟨“𝐴𝐵𝐵”⟩ ∈ (∟G‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  ⟨“cs3 14407  Basecbs 16760  distcds 16811  TarskiGcstrkg 26521  Itvcitv 26527  LineGclng 26528  pInvGcmir 26743  ∟Gcrag 26784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-concat 14126  df-s1 14153  df-s2 14413  df-s3 14414  df-trkgc 26539  df-trkgb 26540  df-trkgcb 26541  df-trkg 26544  df-mir 26744  df-rag 26785
This theorem is referenced by:  ragtriva  26796  ragcgr  26798  perprag  26817  perpdragALT  26818  lmiisolem  26887
  Copyright terms: Public domain W3C validator