Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelaxrep Structured version   Visualization version   GIF version

Theorem modelaxrep 44964
Description: Conditions which guarantee that a class models the Axiom of Replacement ax-rep 5229. Similar to Lemma II.2.4(6) of [Kunen2] p. 111. The first two hypotheses are those in Kunen. The reason for the third hypothesis that our version of Replacement is different from Kunen's (which is zfrep6 7913). If we assumed Regularity, we could eliminate this extra hypothesis, since under Regularity, the empty set is a member of every non-empty transitive class.

Note that, to obtain the relativization of an instance of Replacement to 𝑀, the formula 𝑦𝜑 would need to be replaced with 𝑦𝑀𝜒, where 𝜒 is 𝜑 with all quantifiers relativized to 𝑀. However, we can obtain this by using 𝑦𝑀𝜒 for 𝜑 in this theorem, so it does establish that all instances of Replacement hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.)

Hypotheses
Ref Expression
modelaxrep.1 (𝜓 → Tr 𝑀)
modelaxrep.2 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
modelaxrep.3 (𝜓 → ∅ ∈ 𝑀)
Assertion
Ref Expression
modelaxrep (𝜓 → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑀   𝑓,𝑀
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑓)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem modelaxrep
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 modelaxrep.1 . 2 (𝜓 → Tr 𝑀)
2 modelaxrep.2 . . 3 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
3 funeq 6520 . . . . . 6 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
4 dmeq 5857 . . . . . . 7 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
54eleq1d 2813 . . . . . 6 (𝑓 = 𝑔 → (dom 𝑓𝑀 ↔ dom 𝑔𝑀))
6 rneq 5889 . . . . . . 7 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
76sseq1d 3975 . . . . . 6 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
83, 5, 73anbi123d 1438 . . . . 5 (𝑓 = 𝑔 → ((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) ↔ (Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀)))
96eleq1d 2813 . . . . 5 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
108, 9imbi12d 344 . . . 4 (𝑓 = 𝑔 → (((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)))
1110cbvalvw 2036 . . 3 (∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
122, 11sylib 218 . 2 (𝜓 → ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
13 modelaxrep.3 . 2 (𝜓 → ∅ ∈ 𝑀)
14 trss 5220 . . . . . . 7 (Tr 𝑀 → (𝑥𝑀𝑥𝑀))
1514imp 406 . . . . . 6 ((Tr 𝑀𝑥𝑀) → 𝑥𝑀)
1615ad5ant14 757 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → 𝑥𝑀)
17 simp-4r 783 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
18 simpllr 775 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∅ ∈ 𝑀)
19 simplr 768 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → 𝑥𝑀)
20 nfv 1914 . . . . . 6 𝑤(((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀)
21 nfra1 3259 . . . . . 6 𝑤𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2220, 21nfan 1899 . . . . 5 𝑤((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦))
23 nfv 1914 . . . . . 6 𝑧(((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀)
24 nfcv 2891 . . . . . . 7 𝑧𝑀
25 nfra1 3259 . . . . . . . 8 𝑧𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2624, 25nfrexw 3284 . . . . . . 7 𝑧𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2724, 26nfralw 3283 . . . . . 6 𝑧𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2823, 27nfan 1899 . . . . 5 𝑧((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦))
29 nfopab2 5173 . . . . 5 𝑧{⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
30 eqid 2729 . . . . 5 {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
31 rsp 3223 . . . . . 6 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
3231adantl 481 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
3316, 17, 18, 19, 22, 28, 29, 30, 32modelaxreplem3 44963 . . . 4 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
3433ex 412 . . 3 ((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) → (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
3534ralrimiva 3125 . 2 (((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
361, 12, 13, 35syl21anc 837 1 (𝜓 → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538  wcel 2109  wral 3044  wrex 3053  wss 3911  c0 4292  {copab 5164  Tr wtr 5209  dom cdm 5631  ran crn 5632  Fun wfun 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-en 8896  df-dom 8897  df-sdom 8898
This theorem is referenced by:  wfaxrep  44977
  Copyright terms: Public domain W3C validator