Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelaxrep Structured version   Visualization version   GIF version

Theorem modelaxrep 44971
Description: Conditions which guarantee that a class models the Axiom of Replacement ax-rep 5214. Similar to Lemma II.2.4(6) of [Kunen2] p. 111. The first two hypotheses are those in Kunen. The reason for the third hypothesis that our version of Replacement is different from Kunen's (which is zfrep6 7881). If we assumed Regularity, we could eliminate this extra hypothesis, since under Regularity, the empty set is a member of every non-empty transitive class.

Note that, to obtain the relativization of an instance of Replacement to 𝑀, the formula 𝑦𝜑 would need to be replaced with 𝑦𝑀𝜒, where 𝜒 is 𝜑 with all quantifiers relativized to 𝑀. However, we can obtain this by using 𝑦𝑀𝜒 for 𝜑 in this theorem, so it does establish that all instances of Replacement hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.)

Hypotheses
Ref Expression
modelaxrep.1 (𝜓 → Tr 𝑀)
modelaxrep.2 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
modelaxrep.3 (𝜓 → ∅ ∈ 𝑀)
Assertion
Ref Expression
modelaxrep (𝜓 → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑀   𝑓,𝑀
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑓)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem modelaxrep
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 modelaxrep.1 . 2 (𝜓 → Tr 𝑀)
2 modelaxrep.2 . . 3 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
3 funeq 6496 . . . . . 6 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
4 dmeq 5840 . . . . . . 7 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
54eleq1d 2813 . . . . . 6 (𝑓 = 𝑔 → (dom 𝑓𝑀 ↔ dom 𝑔𝑀))
6 rneq 5872 . . . . . . 7 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
76sseq1d 3963 . . . . . 6 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
83, 5, 73anbi123d 1438 . . . . 5 (𝑓 = 𝑔 → ((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) ↔ (Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀)))
96eleq1d 2813 . . . . 5 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
108, 9imbi12d 344 . . . 4 (𝑓 = 𝑔 → (((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)))
1110cbvalvw 2036 . . 3 (∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
122, 11sylib 218 . 2 (𝜓 → ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
13 modelaxrep.3 . 2 (𝜓 → ∅ ∈ 𝑀)
14 trss 5205 . . . . . . 7 (Tr 𝑀 → (𝑥𝑀𝑥𝑀))
1514imp 406 . . . . . 6 ((Tr 𝑀𝑥𝑀) → 𝑥𝑀)
1615ad5ant14 757 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → 𝑥𝑀)
17 simp-4r 783 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
18 simpllr 775 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∅ ∈ 𝑀)
19 simplr 768 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → 𝑥𝑀)
20 nfv 1914 . . . . . 6 𝑤(((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀)
21 nfra1 3253 . . . . . 6 𝑤𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2220, 21nfan 1899 . . . . 5 𝑤((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦))
23 nfv 1914 . . . . . 6 𝑧(((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀)
24 nfcv 2891 . . . . . . 7 𝑧𝑀
25 nfra1 3253 . . . . . . . 8 𝑧𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2624, 25nfrexw 3277 . . . . . . 7 𝑧𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2724, 26nfralw 3276 . . . . . 6 𝑧𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2823, 27nfan 1899 . . . . 5 𝑧((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦))
29 nfopab2 5159 . . . . 5 𝑧{⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
30 eqid 2729 . . . . 5 {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
31 rsp 3217 . . . . . 6 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
3231adantl 481 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
3316, 17, 18, 19, 22, 28, 29, 30, 32modelaxreplem3 44970 . . . 4 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
3433ex 412 . . 3 ((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) → (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
3534ralrimiva 3121 . 2 (((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
361, 12, 13, 35syl21anc 837 1 (𝜓 → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538  wcel 2109  wral 3044  wrex 3053  wss 3899  c0 4280  {copab 5150  Tr wtr 5195  dom cdm 5613  ran crn 5614  Fun wfun 6470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4940  df-br 5089  df-opab 5151  df-mpt 5170  df-tr 5196  df-id 5508  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-en 8864  df-dom 8865  df-sdom 8866
This theorem is referenced by:  wfaxrep  44984
  Copyright terms: Public domain W3C validator