Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelaxrep Structured version   Visualization version   GIF version

Theorem modelaxrep 44954
Description: Conditions which guarantee that a class models the Axiom of Replacement ax-rep 5249. Similar to Lemma II.2.4(6) of [Kunen2] p. 111. The first two hypotheses are those in Kunen. The reason for the third hypothesis that our version of Replacement is different from Kunen's (which is zfrep6 7951). If we assumed Regularity, we could eliminate this extra hypothesis, since under Regularity, the empty set is a member of every non-empty transitive class.

Note that, to obtain the relativization of an instance of Replacement to 𝑀, the formula 𝑦𝜑 would need to be replaced with 𝑦𝑀𝜒, where 𝜒 is 𝜑 with all quantifiers relativized to 𝑀. However, we can obtain this by using 𝑦𝑀𝜒 for 𝜑 in this theorem, so it does establish that all instances of Replacement hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.)

Hypotheses
Ref Expression
modelaxrep.1 (𝜓 → Tr 𝑀)
modelaxrep.2 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
modelaxrep.3 (𝜓 → ∅ ∈ 𝑀)
Assertion
Ref Expression
modelaxrep (𝜓 → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑀   𝑓,𝑀
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑓)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem modelaxrep
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 modelaxrep.1 . 2 (𝜓 → Tr 𝑀)
2 modelaxrep.2 . . 3 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
3 funeq 6555 . . . . . 6 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
4 dmeq 5883 . . . . . . 7 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
54eleq1d 2819 . . . . . 6 (𝑓 = 𝑔 → (dom 𝑓𝑀 ↔ dom 𝑔𝑀))
6 rneq 5916 . . . . . . 7 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
76sseq1d 3990 . . . . . 6 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
83, 5, 73anbi123d 1438 . . . . 5 (𝑓 = 𝑔 → ((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) ↔ (Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀)))
96eleq1d 2819 . . . . 5 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
108, 9imbi12d 344 . . . 4 (𝑓 = 𝑔 → (((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)))
1110cbvalvw 2035 . . 3 (∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
122, 11sylib 218 . 2 (𝜓 → ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
13 modelaxrep.3 . 2 (𝜓 → ∅ ∈ 𝑀)
14 trss 5240 . . . . . . 7 (Tr 𝑀 → (𝑥𝑀𝑥𝑀))
1514imp 406 . . . . . 6 ((Tr 𝑀𝑥𝑀) → 𝑥𝑀)
1615ad5ant14 757 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → 𝑥𝑀)
17 simp-4r 783 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
18 simpllr 775 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∅ ∈ 𝑀)
19 simplr 768 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → 𝑥𝑀)
20 nfv 1914 . . . . . 6 𝑤(((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀)
21 nfra1 3266 . . . . . 6 𝑤𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2220, 21nfan 1899 . . . . 5 𝑤((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦))
23 nfv 1914 . . . . . 6 𝑧(((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀)
24 nfcv 2898 . . . . . . 7 𝑧𝑀
25 nfra1 3266 . . . . . . . 8 𝑧𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2624, 25nfrexw 3293 . . . . . . 7 𝑧𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2724, 26nfralw 3291 . . . . . 6 𝑧𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2823, 27nfan 1899 . . . . 5 𝑧((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦))
29 nfopab2 5190 . . . . 5 𝑧{⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
30 eqid 2735 . . . . 5 {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
31 rsp 3230 . . . . . 6 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
3231adantl 481 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
3316, 17, 18, 19, 22, 28, 29, 30, 32modelaxreplem3 44953 . . . 4 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
3433ex 412 . . 3 ((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) → (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
3534ralrimiva 3132 . 2 (((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
361, 12, 13, 35syl21anc 837 1 (𝜓 → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538  wcel 2108  wral 3051  wrex 3060  wss 3926  c0 4308  {copab 5181  Tr wtr 5229  dom cdm 5654  ran crn 5655  Fun wfun 6524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-en 8958  df-dom 8959  df-sdom 8960
This theorem is referenced by:  wfaxrep  44967
  Copyright terms: Public domain W3C validator