Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelaxrep Structured version   Visualization version   GIF version

Theorem modelaxrep 45079
Description: Conditions which guarantee that a class models the Axiom of Replacement ax-rep 5219. Similar to Lemma II.2.4(6) of [Kunen2] p. 111. The first two hypotheses are those in Kunen. The reason for the third hypothesis that our version of Replacement is different from Kunen's (which is zfrep6 7893). If we assumed Regularity, we could eliminate this extra hypothesis, since under Regularity, the empty set is a member of every non-empty transitive class.

Note that, to obtain the relativization of an instance of Replacement to 𝑀, the formula 𝑦𝜑 would need to be replaced with 𝑦𝑀𝜒, where 𝜒 is 𝜑 with all quantifiers relativized to 𝑀. However, we can obtain this by using 𝑦𝑀𝜒 for 𝜑 in this theorem, so it does establish that all instances of Replacement hold in 𝑀. (Contributed by Eric Schmidt, 29-Sep-2025.)

Hypotheses
Ref Expression
modelaxrep.1 (𝜓 → Tr 𝑀)
modelaxrep.2 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
modelaxrep.3 (𝜓 → ∅ ∈ 𝑀)
Assertion
Ref Expression
modelaxrep (𝜓 → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑀   𝑓,𝑀
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑓)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem modelaxrep
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 modelaxrep.1 . 2 (𝜓 → Tr 𝑀)
2 modelaxrep.2 . . 3 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
3 funeq 6507 . . . . . 6 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
4 dmeq 5848 . . . . . . 7 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
54eleq1d 2816 . . . . . 6 (𝑓 = 𝑔 → (dom 𝑓𝑀 ↔ dom 𝑔𝑀))
6 rneq 5881 . . . . . . 7 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
76sseq1d 3961 . . . . . 6 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
83, 5, 73anbi123d 1438 . . . . 5 (𝑓 = 𝑔 → ((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) ↔ (Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀)))
96eleq1d 2816 . . . . 5 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
108, 9imbi12d 344 . . . 4 (𝑓 = 𝑔 → (((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)))
1110cbvalvw 2037 . . 3 (∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
122, 11sylib 218 . 2 (𝜓 → ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
13 modelaxrep.3 . 2 (𝜓 → ∅ ∈ 𝑀)
14 trss 5210 . . . . . . 7 (Tr 𝑀 → (𝑥𝑀𝑥𝑀))
1514imp 406 . . . . . 6 ((Tr 𝑀𝑥𝑀) → 𝑥𝑀)
1615ad5ant14 757 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → 𝑥𝑀)
17 simp-4r 783 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
18 simpllr 775 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∅ ∈ 𝑀)
19 simplr 768 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → 𝑥𝑀)
20 nfv 1915 . . . . . 6 𝑤(((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀)
21 nfra1 3256 . . . . . 6 𝑤𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2220, 21nfan 1900 . . . . 5 𝑤((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦))
23 nfv 1915 . . . . . 6 𝑧(((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀)
24 nfcv 2894 . . . . . . 7 𝑧𝑀
25 nfra1 3256 . . . . . . . 8 𝑧𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2624, 25nfrexw 3280 . . . . . . 7 𝑧𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2724, 26nfralw 3279 . . . . . 6 𝑧𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)
2823, 27nfan 1900 . . . . 5 𝑧((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦))
29 nfopab2 5164 . . . . 5 𝑧{⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
30 eqid 2731 . . . . 5 {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
31 rsp 3220 . . . . . 6 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
3231adantl 481 . . . . 5 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
3316, 17, 18, 19, 22, 28, 29, 30, 32modelaxreplem3 45078 . . . 4 (((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) ∧ ∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
3433ex 412 . . 3 ((((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) ∧ 𝑥𝑀) → (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
3534ralrimiva 3124 . 2 (((Tr 𝑀 ∧ ∀𝑔((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)) ∧ ∅ ∈ 𝑀) → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
361, 12, 13, 35syl21anc 837 1 (𝜓 → ∀𝑥𝑀 (∀𝑤𝑀𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539  wcel 2111  wral 3047  wrex 3056  wss 3897  c0 4282  {copab 5155  Tr wtr 5200  dom cdm 5619  ran crn 5620  Fun wfun 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-en 8876  df-dom 8877  df-sdom 8878
This theorem is referenced by:  wfaxrep  45092
  Copyright terms: Public domain W3C validator