Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unir1 | Structured version Visualization version GIF version |
Description: The cumulative hierarchy of sets covers the universe. Proposition 4.45 (b) to (a) of [Mendelson] p. 281. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
unir1 | ⊢ ∪ (𝑅1 “ On) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setind 9592 | . 2 ⊢ (∀𝑥(𝑥 ⊆ ∪ (𝑅1 “ On) → 𝑥 ∈ ∪ (𝑅1 “ On)) → ∪ (𝑅1 “ On) = V) | |
2 | vex 3445 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | r1elss 9664 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝑥 ⊆ ∪ (𝑅1 “ On)) |
4 | 3 | biimpri 227 | . 2 ⊢ (𝑥 ⊆ ∪ (𝑅1 “ On) → 𝑥 ∈ ∪ (𝑅1 “ On)) |
5 | 1, 4 | mpg 1798 | 1 ⊢ ∪ (𝑅1 “ On) = V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3898 ∪ cuni 4853 “ cima 5624 Oncon0 6303 𝑅1cr1 9620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-reg 9450 ax-inf2 9499 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-ov 7341 df-om 7782 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-r1 9622 |
This theorem is referenced by: jech9.3 9672 rankwflem 9673 rankval 9674 rankr1g 9690 rankid 9691 ssrankr1 9693 rankel 9697 rankval3 9698 rankpw 9701 rankss 9707 ranksn 9712 rankuni2 9713 rankun 9714 rankpr 9715 rankop 9716 r1rankid 9717 rankeq0 9719 rankr1b 9722 dfac12a 10006 hsmex2 10291 grutsk 10680 grurankcld 42224 |
Copyright terms: Public domain | W3C validator |