![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unir1 | Structured version Visualization version GIF version |
Description: The cumulative hierarchy of sets covers the universe. Proposition 4.45 (b) to (a) of [Mendelson] p. 281. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
unir1 | ⊢ ∪ (𝑅1 “ On) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setind 8894 | . 2 ⊢ (∀𝑥(𝑥 ⊆ ∪ (𝑅1 “ On) → 𝑥 ∈ ∪ (𝑅1 “ On)) → ∪ (𝑅1 “ On) = V) | |
2 | vex 3417 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | r1elss 8953 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝑥 ⊆ ∪ (𝑅1 “ On)) |
4 | 3 | biimpri 220 | . 2 ⊢ (𝑥 ⊆ ∪ (𝑅1 “ On) → 𝑥 ∈ ∪ (𝑅1 “ On)) |
5 | 1, 4 | mpg 1896 | 1 ⊢ ∪ (𝑅1 “ On) = V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ⊆ wss 3798 ∪ cuni 4660 “ cima 5349 Oncon0 5967 𝑅1cr1 8909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-reg 8773 ax-inf2 8822 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-r1 8911 |
This theorem is referenced by: jech9.3 8961 rankwflem 8962 rankval 8963 rankr1g 8979 rankid 8980 ssrankr1 8982 rankel 8986 rankval3 8987 rankpw 8990 rankss 8996 ranksn 9001 rankuni2 9002 rankun 9003 rankpr 9004 rankop 9005 r1rankid 9006 rankeq0 9008 rankr1b 9011 dfac12a 9292 hsmex2 9577 grutsk 9966 |
Copyright terms: Public domain | W3C validator |