| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unir1 | Structured version Visualization version GIF version | ||
| Description: The cumulative hierarchy of sets covers the universe. Proposition 4.45 (b) to (a) of [Mendelson] p. 281. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| unir1 | ⊢ ∪ (𝑅1 “ On) = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setind 9694 | . 2 ⊢ (∀𝑥(𝑥 ⊆ ∪ (𝑅1 “ On) → 𝑥 ∈ ∪ (𝑅1 “ On)) → ∪ (𝑅1 “ On) = V) | |
| 2 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | r1elss 9766 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝑥 ⊆ ∪ (𝑅1 “ On)) |
| 4 | 3 | biimpri 228 | . 2 ⊢ (𝑥 ⊆ ∪ (𝑅1 “ On) → 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 5 | 1, 4 | mpg 1797 | 1 ⊢ ∪ (𝑅1 “ On) = V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ∪ cuni 4874 “ cima 5644 Oncon0 6335 𝑅1cr1 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-r1 9724 |
| This theorem is referenced by: jech9.3 9774 rankwflem 9775 rankval 9776 rankr1g 9792 rankid 9793 ssrankr1 9795 rankel 9799 rankval3 9800 rankpw 9803 rankss 9809 ranksn 9814 rankuni2 9815 rankun 9816 rankpr 9817 rankop 9818 r1rankid 9819 rankeq0 9821 rankr1b 9824 dfac12a 10109 hsmex2 10393 grutsk 10782 grurankcld 44229 |
| Copyright terms: Public domain | W3C validator |