MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass23l Structured version   Visualization version   GIF version

Theorem psrass23l 21852
Description: Associative identity for the ring of power series. Part of psrass23 21854 which does not require the scalar ring to be commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 14-Aug-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass23l.k 𝐾 = (Base‘𝑅)
psrass23l.n · = ( ·𝑠𝑆)
psrass23l.a (𝜑𝐴𝐾)
Assertion
Ref Expression
psrass23l (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   × (𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrass23l
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . 9 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass23l.n . . . . . . . . 9 · = ( ·𝑠𝑆)
3 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4 psrass.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
5 eqid 2729 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
6 psrass.d . . . . . . . . 9 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 psrass23l.a . . . . . . . . . . . 12 (𝜑𝐴𝐾)
87adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝐴𝐾)
9 psrass23l.k . . . . . . . . . . 11 𝐾 = (Base‘𝑅)
108, 9eleqtrdi 2838 . . . . . . . . . 10 ((𝜑𝑘𝐷) → 𝐴 ∈ (Base‘𝑅))
1110adantr 480 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐴 ∈ (Base‘𝑅))
12 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1312ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋𝐵)
14 ssrab2 4039 . . . . . . . . . 10 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
15 simpr 484 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
1614, 15sselid 3941 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
171, 2, 3, 4, 5, 6, 11, 13, 16psrvscaval 21835 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝐴 · 𝑋)‘𝑥) = (𝐴(.r𝑅)(𝑋𝑥)))
1817oveq1d 7384 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) = ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘f𝑥))))
19 psrring.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
2019ad2antrr 726 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
211, 3, 6, 4, 13psrelbas 21819 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
2221, 16ffvelcdmd 7039 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
23 psrass.y . . . . . . . . . . 11 (𝜑𝑌𝐵)
2423ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌𝐵)
251, 3, 6, 4, 24psrelbas 21819 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
26 eqid 2729 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
276, 26psrbagconcl 21812 . . . . . . . . . . 11 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
2827adantll 714 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
2914, 28sselid 3941 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
3025, 29ffvelcdmd 7039 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
313, 5ringass 20138 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (Base‘𝑅) ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))) → ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘f𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
3220, 11, 22, 30, 31syl13anc 1374 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘f𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
3318, 32eqtrd 2764 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
3433mpteq2dva 5195 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))
3534oveq2d 7385 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
36 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
3719adantr 480 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
386psrbaglefi 21811 . . . . . 6 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
3938adantl 481 . . . . 5 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
403, 5, 20, 22, 30ringcld 20145 . . . . 5 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
41 ovex 7402 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
426, 41rabex2 5291 . . . . . . . . 9 𝐷 ∈ V
4342mptrabex 7181 . . . . . . . 8 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V
44 funmpt 6538 . . . . . . . 8 Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
45 fvex 6853 . . . . . . . 8 (0g𝑅) ∈ V
4643, 44, 453pm3.2i 1340 . . . . . . 7 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V)
4746a1i 11 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V))
48 suppssdm 8133 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
49 eqid 2729 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
5049dmmptss 6202 . . . . . . . 8 dom (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ⊆ {𝑦𝐷𝑦r𝑘}
5148, 50sstri 3953 . . . . . . 7 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘}
5251a1i 11 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘})
53 suppssfifsupp 9307 . . . . . 6 ((((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑦𝐷𝑦r𝑘} ∈ Fin ∧ ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘})) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
5447, 39, 52, 53syl12anc 836 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
553, 36, 5, 37, 39, 10, 40, 54gsummulc2 20202 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
5635, 55eqtrd 2764 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
5756mpteq2dva 5195 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
58 psrass.t . . 3 × = (.r𝑆)
591, 2, 9, 4, 19, 7, 12psrvscacl 21836 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝐵)
601, 4, 5, 58, 6, 59, 23psrmulfval 21828 . 2 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
611, 4, 58, 19, 12, 23psrmulcl 21831 . . . 4 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
621, 2, 9, 4, 5, 6, 7, 61psrvsca 21834 . . 3 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = ((𝐷 × {𝐴}) ∘f (.r𝑅)(𝑋 × 𝑌)))
6342a1i 11 . . . 4 (𝜑𝐷 ∈ V)
64 ovexd 7404 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) ∈ V)
65 fconstmpt 5693 . . . . 5 (𝐷 × {𝐴}) = (𝑘𝐷𝐴)
6665a1i 11 . . . 4 (𝜑 → (𝐷 × {𝐴}) = (𝑘𝐷𝐴))
671, 4, 5, 58, 6, 12, 23psrmulfval 21828 . . . 4 (𝜑 → (𝑋 × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
6863, 8, 64, 66, 67offval2 7653 . . 3 (𝜑 → ((𝐷 × {𝐴}) ∘f (.r𝑅)(𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
6962, 68eqtrd 2764 . 2 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
7057, 60, 693eqtr4d 2774 1 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  wss 3911  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629  ccnv 5630  dom cdm 5631  cima 5634  Fun wfun 6493  cfv 6499  (class class class)co 7369  f cof 7631  r cofr 7632   supp csupp 8116  m cmap 8776  Fincfn 8895   finSupp cfsupp 9288  cle 11185  cmin 11381  cn 12162  0cn0 12418  Basecbs 17155  .rcmulr 17197   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  Ringcrg 20118   mPwSer cmps 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-tset 17215  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-grp 18844  df-minusg 18845  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-ur 20067  df-ring 20120  df-psr 21794
This theorem is referenced by:  psrass23  21854  ply1ass23l  22087
  Copyright terms: Public domain W3C validator