MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass23l Structured version   Visualization version   GIF version

Theorem psrass23l 21087
Description: Associative identity for the ring of power series. Part of psrass23 21089 which does not require the scalar ring to be commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 14-Aug-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass23l.k 𝐾 = (Base‘𝑅)
psrass23l.n · = ( ·𝑠𝑆)
psrass23l.a (𝜑𝐴𝐾)
Assertion
Ref Expression
psrass23l (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   × (𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrass23l
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . 9 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass23l.n . . . . . . . . 9 · = ( ·𝑠𝑆)
3 eqid 2738 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4 psrass.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
5 eqid 2738 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
6 psrass.d . . . . . . . . 9 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 psrass23l.a . . . . . . . . . . . 12 (𝜑𝐴𝐾)
87adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝐴𝐾)
9 psrass23l.k . . . . . . . . . . 11 𝐾 = (Base‘𝑅)
108, 9eleqtrdi 2849 . . . . . . . . . 10 ((𝜑𝑘𝐷) → 𝐴 ∈ (Base‘𝑅))
1110adantr 480 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐴 ∈ (Base‘𝑅))
12 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1312ad2antrr 722 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋𝐵)
14 ssrab2 4009 . . . . . . . . . 10 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
15 simpr 484 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
1614, 15sselid 3915 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
171, 2, 3, 4, 5, 6, 11, 13, 16psrvscaval 21071 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝐴 · 𝑋)‘𝑥) = (𝐴(.r𝑅)(𝑋𝑥)))
1817oveq1d 7270 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) = ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘f𝑥))))
19 psrring.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
2019ad2antrr 722 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
211, 3, 6, 4, 13psrelbas 21058 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
2221, 16ffvelrnd 6944 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
23 psrass.y . . . . . . . . . . 11 (𝜑𝑌𝐵)
2423ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌𝐵)
251, 3, 6, 4, 24psrelbas 21058 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
26 simplr 765 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
27 eqid 2738 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
286, 27psrbagconcl 21047 . . . . . . . . . . 11 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
2926, 15, 28syl2anc 583 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
3014, 29sselid 3915 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
3125, 30ffvelrnd 6944 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
323, 5ringass 19718 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (Base‘𝑅) ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))) → ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘f𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
3320, 11, 22, 31, 32syl13anc 1370 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘f𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
3418, 33eqtrd 2778 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
3534mpteq2dva 5170 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))
3635oveq2d 7271 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
37 eqid 2738 . . . . 5 (0g𝑅) = (0g𝑅)
38 eqid 2738 . . . . 5 (+g𝑅) = (+g𝑅)
3919adantr 480 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
406psrbaglefi 21045 . . . . . 6 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
4140adantl 481 . . . . 5 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
423, 5ringcl 19715 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
4320, 22, 31, 42syl3anc 1369 . . . . 5 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
44 ovex 7288 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
456, 44rabex2 5253 . . . . . . . . 9 𝐷 ∈ V
4645mptrabex 7083 . . . . . . . 8 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V
47 funmpt 6456 . . . . . . . 8 Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
48 fvex 6769 . . . . . . . 8 (0g𝑅) ∈ V
4946, 47, 483pm3.2i 1337 . . . . . . 7 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V)
5049a1i 11 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V))
51 suppssdm 7964 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
52 eqid 2738 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
5352dmmptss 6133 . . . . . . . 8 dom (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ⊆ {𝑦𝐷𝑦r𝑘}
5451, 53sstri 3926 . . . . . . 7 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘}
5554a1i 11 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘})
56 suppssfifsupp 9073 . . . . . 6 ((((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑦𝐷𝑦r𝑘} ∈ Fin ∧ ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘})) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
5750, 41, 55, 56syl12anc 833 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
583, 37, 38, 5, 39, 41, 10, 43, 57gsummulc2 19761 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
5936, 58eqtrd 2778 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
6059mpteq2dva 5170 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
61 psrass.t . . 3 × = (.r𝑆)
621, 2, 9, 4, 19, 7, 12psrvscacl 21072 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝐵)
631, 4, 5, 61, 6, 62, 23psrmulfval 21064 . 2 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
641, 4, 61, 19, 12, 23psrmulcl 21067 . . . 4 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
651, 2, 9, 4, 5, 6, 7, 64psrvsca 21070 . . 3 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = ((𝐷 × {𝐴}) ∘f (.r𝑅)(𝑋 × 𝑌)))
6645a1i 11 . . . 4 (𝜑𝐷 ∈ V)
67 ovexd 7290 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) ∈ V)
68 fconstmpt 5640 . . . . 5 (𝐷 × {𝐴}) = (𝑘𝐷𝐴)
6968a1i 11 . . . 4 (𝜑 → (𝐷 × {𝐴}) = (𝑘𝐷𝐴))
701, 4, 5, 61, 6, 12, 23psrmulfval 21064 . . . 4 (𝜑 → (𝑋 × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
7166, 8, 67, 69, 70offval2 7531 . . 3 (𝜑 → ((𝐷 × {𝐴}) ∘f (.r𝑅)(𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
7265, 71eqtrd 2778 . 2 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
7360, 63, 723eqtr4d 2788 1 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  wss 3883  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  cima 5583  Fun wfun 6412  cfv 6418  (class class class)co 7255  f cof 7509  r cofr 7510   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  cle 10941  cmin 11135  cn 11903  0cn0 12163  Basecbs 16840  +gcplusg 16888  .rcmulr 16889   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Ringcrg 19698   mPwSer cmps 21017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-psr 21022
This theorem is referenced by:  psrass23  21089  ply1ass23l  45611
  Copyright terms: Public domain W3C validator