Step | Hyp | Ref
| Expression |
1 | | psrring.s |
. . . . . . . . 9
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | psrass23l.n |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑆) |
3 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
4 | | psrass.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑆) |
5 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
6 | | psrass.d |
. . . . . . . . 9
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
7 | | psrass23l.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝐾) |
8 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝐴 ∈ 𝐾) |
9 | | psrass23l.k |
. . . . . . . . . . 11
⊢ 𝐾 = (Base‘𝑅) |
10 | 8, 9 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝐴 ∈ (Base‘𝑅)) |
11 | 10 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝐴 ∈ (Base‘𝑅)) |
12 | | psrass.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
13 | 12 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑋 ∈ 𝐵) |
14 | | ssrab2 4013 |
. . . . . . . . . 10
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ⊆ 𝐷 |
15 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
16 | 14, 15 | sselid 3919 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥 ∈ 𝐷) |
17 | 1, 2, 3, 4, 5, 6, 11, 13, 16 | psrvscaval 21161 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝐴 · 𝑋)‘𝑥) = (𝐴(.r‘𝑅)(𝑋‘𝑥))) |
18 | 17 | oveq1d 7290 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) = ((𝐴(.r‘𝑅)(𝑋‘𝑥))(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) |
19 | | psrring.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
20 | 19 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
21 | 1, 3, 6, 4, 13 | psrelbas 21148 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑋:𝐷⟶(Base‘𝑅)) |
22 | 21, 16 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
23 | | psrass.y |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
24 | 23 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑌 ∈ 𝐵) |
25 | 1, 3, 6, 4, 24 | psrelbas 21148 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑌:𝐷⟶(Base‘𝑅)) |
26 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑘 ∈ 𝐷) |
27 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} |
28 | 6, 27 | psrbagconcl 21137 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ 𝐷 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
29 | 26, 15, 28 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
30 | 14, 29 | sselid 3919 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ 𝐷) |
31 | 25, 30 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑌‘(𝑘 ∘f − 𝑥)) ∈ (Base‘𝑅)) |
32 | 3, 5 | ringass 19803 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (Base‘𝑅) ∧ (𝑋‘𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘 ∘f − 𝑥)) ∈ (Base‘𝑅))) → ((𝐴(.r‘𝑅)(𝑋‘𝑥))(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) = (𝐴(.r‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) |
33 | 20, 11, 22, 31, 32 | syl13anc 1371 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝐴(.r‘𝑅)(𝑋‘𝑥))(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) = (𝐴(.r‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) |
34 | 18, 33 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) = (𝐴(.r‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) |
35 | 34 | mpteq2dva 5174 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (𝐴(.r‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))) |
36 | 35 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (𝐴(.r‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
37 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) |
38 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
39 | 19 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ Ring) |
40 | 6 | psrbaglefi 21135 |
. . . . . 6
⊢ (𝑘 ∈ 𝐷 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
41 | 40 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
42 | 3, 5 | ringcl 19800 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘 ∘f − 𝑥)) ∈ (Base‘𝑅)) → ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) ∈ (Base‘𝑅)) |
43 | 20, 22, 31, 42 | syl3anc 1370 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) ∈ (Base‘𝑅)) |
44 | | ovex 7308 |
. . . . . . . . . 10
⊢
(ℕ0 ↑m 𝐼) ∈ V |
45 | 6, 44 | rabex2 5258 |
. . . . . . . . 9
⊢ 𝐷 ∈ V |
46 | 45 | mptrabex 7101 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∈ V |
47 | | funmpt 6472 |
. . . . . . . 8
⊢ Fun
(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) |
48 | | fvex 6787 |
. . . . . . . 8
⊢
(0g‘𝑅) ∈ V |
49 | 46, 47, 48 | 3pm3.2i 1338 |
. . . . . . 7
⊢ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∧
(0g‘𝑅)
∈ V) |
50 | 49 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∧
(0g‘𝑅)
∈ V)) |
51 | | suppssdm 7993 |
. . . . . . . 8
⊢ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) supp
(0g‘𝑅))
⊆ dom (𝑥 ∈
{𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) |
52 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) |
53 | 52 | dmmptss 6144 |
. . . . . . . 8
⊢ dom
(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ⊆ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} |
54 | 51, 53 | sstri 3930 |
. . . . . . 7
⊢ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) supp
(0g‘𝑅))
⊆ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} |
55 | 54 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) supp
(0g‘𝑅))
⊆ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
56 | | suppssfifsupp 9143 |
. . . . . 6
⊢ ((((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∧
(0g‘𝑅)
∈ V) ∧ ({𝑦 ∈
𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) supp
(0g‘𝑅))
⊆ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘})) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) finSupp
(0g‘𝑅)) |
57 | 50, 41, 55, 56 | syl12anc 834 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) finSupp
(0g‘𝑅)) |
58 | 3, 37, 38, 5, 39, 41, 10, 43, 57 | gsummulc2 19846 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (𝐴(.r‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))) = (𝐴(.r‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
59 | 36, 58 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) = (𝐴(.r‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
60 | 59 | mpteq2dva 5174 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))) = (𝑘 ∈ 𝐷 ↦ (𝐴(.r‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))))) |
61 | | psrass.t |
. . 3
⊢ × =
(.r‘𝑆) |
62 | 1, 2, 9, 4, 19, 7,
12 | psrvscacl 21162 |
. . 3
⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝐵) |
63 | 1, 4, 5, 61, 6, 62, 23 | psrmulfval 21154 |
. 2
⊢ (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
64 | 1, 4, 61, 19, 12, 23 | psrmulcl 21157 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑌) ∈ 𝐵) |
65 | 1, 2, 9, 4, 5, 6, 7, 64 | psrvsca 21160 |
. . 3
⊢ (𝜑 → (𝐴 · (𝑋 × 𝑌)) = ((𝐷 × {𝐴}) ∘f
(.r‘𝑅)(𝑋 × 𝑌))) |
66 | 45 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ V) |
67 | | ovexd 7310 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) ∈ V) |
68 | | fconstmpt 5649 |
. . . . 5
⊢ (𝐷 × {𝐴}) = (𝑘 ∈ 𝐷 ↦ 𝐴) |
69 | 68 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐷 × {𝐴}) = (𝑘 ∈ 𝐷 ↦ 𝐴)) |
70 | 1, 4, 5, 61, 6, 12, 23 | psrmulfval 21154 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑌) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
71 | 66, 8, 67, 69, 70 | offval2 7553 |
. . 3
⊢ (𝜑 → ((𝐷 × {𝐴}) ∘f
(.r‘𝑅)(𝑋 × 𝑌)) = (𝑘 ∈ 𝐷 ↦ (𝐴(.r‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))))) |
72 | 65, 71 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝐴 · (𝑋 × 𝑌)) = (𝑘 ∈ 𝐷 ↦ (𝐴(.r‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))))) |
73 | 60, 63, 72 | 3eqtr4d 2788 |
1
⊢ (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |