MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrg Structured version   Visualization version   GIF version

Theorem mplsubrg 21209
Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼𝑊)
mpllss.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
mplsubrg (𝜑𝑈 ∈ (SubRing‘𝑆))

Proof of Theorem mplsubrg
Dummy variables 𝑘 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mplsubg.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mplsubg.u . . 3 𝑈 = (Base‘𝑃)
4 mplsubg.i . . 3 (𝜑𝐼𝑊)
5 mpllss.r . . . 4 (𝜑𝑅 ∈ Ring)
6 ringgrp 19786 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
75, 6syl 17 . . 3 (𝜑𝑅 ∈ Grp)
81, 2, 3, 4, 7mplsubg 21206 . 2 (𝜑𝑈 ∈ (SubGrp‘𝑆))
91, 4, 5psrring 21178 . . . 4 (𝜑𝑆 ∈ Ring)
10 eqid 2740 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2740 . . . . 5 (1r𝑆) = (1r𝑆)
1210, 11ringidcl 19805 . . . 4 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
139, 12syl 17 . . 3 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
14 eqid 2740 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
15 eqid 2740 . . . . 5 (0g𝑅) = (0g𝑅)
16 eqid 2740 . . . . 5 (1r𝑅) = (1r𝑅)
171, 4, 5, 14, 15, 16, 11psr1 21179 . . . 4 (𝜑 → (1r𝑆) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
18 ovex 7304 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
1918mptrabex 7098 . . . . . . 7 (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V
20 funmpt 6470 . . . . . . 7 Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))
21 fvex 6784 . . . . . . 7 (0g𝑅) ∈ V
2219, 20, 213pm3.2i 1338 . . . . . 6 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V)
2322a1i 11 . . . . 5 (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V))
24 snfi 8817 . . . . . 6 {(𝐼 × {0})} ∈ Fin
2524a1i 11 . . . . 5 (𝜑 → {(𝐼 × {0})} ∈ Fin)
26 eldifsni 4729 . . . . . . . 8 (𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})}) → 𝑘 ≠ (𝐼 × {0}))
2726adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → 𝑘 ≠ (𝐼 × {0}))
28 ifnefalse 4477 . . . . . . 7 (𝑘 ≠ (𝐼 × {0}) → if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) = (0g𝑅))
2927, 28syl 17 . . . . . 6 ((𝜑𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) = (0g𝑅))
3018rabex 5260 . . . . . . 7 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
3130a1i 11 . . . . . 6 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
3229, 31suppss2 8007 . . . . 5 (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {(𝐼 × {0})})
33 suppssfifsupp 9121 . . . . 5 ((((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧ ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {(𝐼 × {0})})) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
3423, 25, 32, 33syl12anc 834 . . . 4 (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
3517, 34eqbrtrd 5101 . . 3 (𝜑 → (1r𝑆) finSupp (0g𝑅))
362, 1, 10, 15, 3mplelbas 21197 . . 3 ((1r𝑆) ∈ 𝑈 ↔ ((1r𝑆) ∈ (Base‘𝑆) ∧ (1r𝑆) finSupp (0g𝑅)))
3713, 35, 36sylanbrc 583 . 2 (𝜑 → (1r𝑆) ∈ 𝑈)
384adantr 481 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐼𝑊)
395adantr 481 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑅 ∈ Ring)
40 eqid 2740 . . . 4 ( ∘f + “ ((𝑥 supp (0g𝑅)) × (𝑦 supp (0g𝑅)))) = ( ∘f + “ ((𝑥 supp (0g𝑅)) × (𝑦 supp (0g𝑅))))
41 eqid 2740 . . . 4 (.r𝑅) = (.r𝑅)
42 simprl 768 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
43 simprr 770 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
441, 2, 3, 38, 39, 14, 15, 40, 41, 42, 43mplsubrglem 21208 . . 3 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑆)𝑦) ∈ 𝑈)
4544ralrimivva 3117 . 2 (𝜑 → ∀𝑥𝑈𝑦𝑈 (𝑥(.r𝑆)𝑦) ∈ 𝑈)
46 eqid 2740 . . . 4 (.r𝑆) = (.r𝑆)
4710, 11, 46issubrg2 20042 . . 3 (𝑆 ∈ Ring → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r𝑆) ∈ 𝑈 ∧ ∀𝑥𝑈𝑦𝑈 (𝑥(.r𝑆)𝑦) ∈ 𝑈)))
489, 47syl 17 . 2 (𝜑 → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r𝑆) ∈ 𝑈 ∧ ∀𝑥𝑈𝑦𝑈 (𝑥(.r𝑆)𝑦) ∈ 𝑈)))
498, 37, 45, 48mpbir3and 1341 1 (𝜑𝑈 ∈ (SubRing‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  {crab 3070  Vcvv 3431  cdif 3889  wss 3892  ifcif 4465  {csn 4567   class class class wbr 5079  cmpt 5162   × cxp 5588  ccnv 5589  cima 5593  Fun wfun 6426  cfv 6432  (class class class)co 7271  f cof 7525   supp csupp 7968  m cmap 8598  Fincfn 8716   finSupp cfsupp 9106  0cc0 10872   + caddc 10875  cn 11973  0cn0 12233  Basecbs 16910  .rcmulr 16961  0gc0g 17148  Grpcgrp 18575  SubGrpcsubg 18747  1rcur 19735  Ringcrg 19781  SubRingcsubrg 20018   mPwSer cmps 21105   mPoly cmpl 21107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-ofr 7528  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-fzo 13382  df-seq 13720  df-hash 14043  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-sca 16976  df-vsca 16977  df-tset 16979  df-0g 17150  df-gsum 17151  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-submnd 18429  df-grp 18578  df-minusg 18579  df-mulg 18699  df-subg 18750  df-ghm 18830  df-cntz 18921  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-subrg 20020  df-psr 21110  df-mpl 21112
This theorem is referenced by:  mpl1  21214  mplring  21222  mplcrng  21224  mplassa  21225  subrgmpl  21231  mplbas2  21241  subrgasclcl  21273  mplind  21276  evlseu  21291  ply1subrg  21366
  Copyright terms: Public domain W3C validator