| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplsubrg | Structured version Visualization version GIF version | ||
| Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mplsubg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplsubg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplsubg.u | ⊢ 𝑈 = (Base‘𝑃) |
| mplsubg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mpllss.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| mplsubrg | ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | mplsubg.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | mplsubg.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
| 4 | mplsubg.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | mpllss.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | ringgrp 20151 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | 1, 2, 3, 4, 7 | mplsubg 21934 | . 2 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) |
| 9 | 1, 4, 5 | psrring 21902 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 10 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 11 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 12 | 10, 11 | ringidcl 20178 | . . . 4 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 13 | 9, 12 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 14 | eqid 2731 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 15 | eqid 2731 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 16 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 17 | 1, 4, 5, 14, 15, 16, 11 | psr1 21903 | . . . 4 ⊢ (𝜑 → (1r‘𝑆) = (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 18 | ovex 7374 | . . . . . . . 8 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 19 | 18 | mptrabex 7154 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V |
| 20 | funmpt 6514 | . . . . . . 7 ⊢ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) | |
| 21 | fvex 6830 | . . . . . . 7 ⊢ (0g‘𝑅) ∈ V | |
| 22 | 19, 20, 21 | 3pm3.2i 1340 | . . . . . 6 ⊢ ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V) |
| 23 | 22 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V)) |
| 24 | snfi 8960 | . . . . . 6 ⊢ {(𝐼 × {0})} ∈ Fin | |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → {(𝐼 × {0})} ∈ Fin) |
| 26 | eldifsni 4737 | . . . . . . . 8 ⊢ (𝑘 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})}) → 𝑘 ≠ (𝐼 × {0})) | |
| 27 | 26 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → 𝑘 ≠ (𝐼 × {0})) |
| 28 | ifnefalse 4482 | . . . . . . 7 ⊢ (𝑘 ≠ (𝐼 × {0}) → if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) | |
| 29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 30 | 18 | rabex 5272 | . . . . . . 7 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
| 31 | 30 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 32 | 29, 31 | suppss2 8125 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {(𝐼 × {0})}) |
| 33 | suppssfifsupp 9259 | . . . . 5 ⊢ ((((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧ ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {(𝐼 × {0})})) → (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) | |
| 34 | 23, 25, 32, 33 | syl12anc 836 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) |
| 35 | 17, 34 | eqbrtrd 5108 | . . 3 ⊢ (𝜑 → (1r‘𝑆) finSupp (0g‘𝑅)) |
| 36 | 2, 1, 10, 15, 3 | mplelbas 21923 | . . 3 ⊢ ((1r‘𝑆) ∈ 𝑈 ↔ ((1r‘𝑆) ∈ (Base‘𝑆) ∧ (1r‘𝑆) finSupp (0g‘𝑅))) |
| 37 | 13, 35, 36 | sylanbrc 583 | . 2 ⊢ (𝜑 → (1r‘𝑆) ∈ 𝑈) |
| 38 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐼 ∈ 𝑊) |
| 39 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑅 ∈ Ring) |
| 40 | eqid 2731 | . . . 4 ⊢ ( ∘f + “ ((𝑥 supp (0g‘𝑅)) × (𝑦 supp (0g‘𝑅)))) = ( ∘f + “ ((𝑥 supp (0g‘𝑅)) × (𝑦 supp (0g‘𝑅)))) | |
| 41 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 42 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝑈) | |
| 43 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝑈) | |
| 44 | 1, 2, 3, 38, 39, 14, 15, 40, 41, 42, 43 | mplsubrglem 21936 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑈) |
| 45 | 44 | ralrimivva 3175 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 (𝑥(.r‘𝑆)𝑦) ∈ 𝑈) |
| 46 | eqid 2731 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 47 | 10, 11, 46 | issubrg2 20502 | . . 3 ⊢ (𝑆 ∈ Ring → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r‘𝑆) ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 (𝑥(.r‘𝑆)𝑦) ∈ 𝑈))) |
| 48 | 9, 47 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r‘𝑆) ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 (𝑥(.r‘𝑆)𝑦) ∈ 𝑈))) |
| 49 | 8, 37, 45, 48 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 {crab 3395 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 ifcif 4470 {csn 4571 class class class wbr 5086 ↦ cmpt 5167 × cxp 5609 ◡ccnv 5610 “ cima 5614 Fun wfun 6470 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 supp csupp 8085 ↑m cmap 8745 Fincfn 8864 finSupp cfsupp 9240 0cc0 11001 + caddc 11004 ℕcn 12120 ℕ0cn0 12376 Basecbs 17115 .rcmulr 17157 0gc0g 17338 Grpcgrp 18841 SubGrpcsubg 19028 1rcur 20094 Ringcrg 20146 SubRingcsubrg 20479 mPwSer cmps 21836 mPoly cmpl 21838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-subrng 20456 df-subrg 20480 df-psr 21841 df-mpl 21843 |
| This theorem is referenced by: mpl1 21944 mplring 21951 mplcrng 21953 mplassa 21954 subrgmpl 21962 mplbas2 21972 subrgasclcl 21997 mplind 22000 evlseu 22013 ply1subrg 22105 mplvrpmrhm 33569 |
| Copyright terms: Public domain | W3C validator |