MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrg Structured version   Visualization version   GIF version

Theorem mplsubrg 21411
Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼𝑊)
mpllss.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
mplsubrg (𝜑𝑈 ∈ (SubRing‘𝑆))

Proof of Theorem mplsubrg
Dummy variables 𝑘 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mplsubg.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mplsubg.u . . 3 𝑈 = (Base‘𝑃)
4 mplsubg.i . . 3 (𝜑𝐼𝑊)
5 mpllss.r . . . 4 (𝜑𝑅 ∈ Ring)
6 ringgrp 19969 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
75, 6syl 17 . . 3 (𝜑𝑅 ∈ Grp)
81, 2, 3, 4, 7mplsubg 21408 . 2 (𝜑𝑈 ∈ (SubGrp‘𝑆))
91, 4, 5psrring 21380 . . . 4 (𝜑𝑆 ∈ Ring)
10 eqid 2736 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2736 . . . . 5 (1r𝑆) = (1r𝑆)
1210, 11ringidcl 19989 . . . 4 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
139, 12syl 17 . . 3 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
14 eqid 2736 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
15 eqid 2736 . . . . 5 (0g𝑅) = (0g𝑅)
16 eqid 2736 . . . . 5 (1r𝑅) = (1r𝑅)
171, 4, 5, 14, 15, 16, 11psr1 21381 . . . 4 (𝜑 → (1r𝑆) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))))
18 ovex 7390 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
1918mptrabex 7175 . . . . . . 7 (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V
20 funmpt 6539 . . . . . . 7 Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)))
21 fvex 6855 . . . . . . 7 (0g𝑅) ∈ V
2219, 20, 213pm3.2i 1339 . . . . . 6 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V)
2322a1i 11 . . . . 5 (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V))
24 snfi 8988 . . . . . 6 {(𝐼 × {0})} ∈ Fin
2524a1i 11 . . . . 5 (𝜑 → {(𝐼 × {0})} ∈ Fin)
26 eldifsni 4750 . . . . . . . 8 (𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})}) → 𝑘 ≠ (𝐼 × {0}))
2726adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → 𝑘 ≠ (𝐼 × {0}))
28 ifnefalse 4498 . . . . . . 7 (𝑘 ≠ (𝐼 × {0}) → if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) = (0g𝑅))
2927, 28syl 17 . . . . . 6 ((𝜑𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅)) = (0g𝑅))
3018rabex 5289 . . . . . . 7 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
3130a1i 11 . . . . . 6 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
3229, 31suppss2 8131 . . . . 5 (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {(𝐼 × {0})})
33 suppssfifsupp 9320 . . . . 5 ((((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧ ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {(𝐼 × {0})})) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
3423, 25, 32, 33syl12anc 835 . . . 4 (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
3517, 34eqbrtrd 5127 . . 3 (𝜑 → (1r𝑆) finSupp (0g𝑅))
362, 1, 10, 15, 3mplelbas 21399 . . 3 ((1r𝑆) ∈ 𝑈 ↔ ((1r𝑆) ∈ (Base‘𝑆) ∧ (1r𝑆) finSupp (0g𝑅)))
3713, 35, 36sylanbrc 583 . 2 (𝜑 → (1r𝑆) ∈ 𝑈)
384adantr 481 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐼𝑊)
395adantr 481 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑅 ∈ Ring)
40 eqid 2736 . . . 4 ( ∘f + “ ((𝑥 supp (0g𝑅)) × (𝑦 supp (0g𝑅)))) = ( ∘f + “ ((𝑥 supp (0g𝑅)) × (𝑦 supp (0g𝑅))))
41 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
42 simprl 769 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
43 simprr 771 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
441, 2, 3, 38, 39, 14, 15, 40, 41, 42, 43mplsubrglem 21410 . . 3 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑆)𝑦) ∈ 𝑈)
4544ralrimivva 3197 . 2 (𝜑 → ∀𝑥𝑈𝑦𝑈 (𝑥(.r𝑆)𝑦) ∈ 𝑈)
46 eqid 2736 . . . 4 (.r𝑆) = (.r𝑆)
4710, 11, 46issubrg2 20242 . . 3 (𝑆 ∈ Ring → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r𝑆) ∈ 𝑈 ∧ ∀𝑥𝑈𝑦𝑈 (𝑥(.r𝑆)𝑦) ∈ 𝑈)))
489, 47syl 17 . 2 (𝜑 → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r𝑆) ∈ 𝑈 ∧ ∀𝑥𝑈𝑦𝑈 (𝑥(.r𝑆)𝑦) ∈ 𝑈)))
498, 37, 45, 48mpbir3and 1342 1 (𝜑𝑈 ∈ (SubRing‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  ccnv 5632  cima 5636  Fun wfun 6490  cfv 6496  (class class class)co 7357  f cof 7615   supp csupp 8092  m cmap 8765  Fincfn 8883   finSupp cfsupp 9305  0cc0 11051   + caddc 11054  cn 12153  0cn0 12413  Basecbs 17083  .rcmulr 17134  0gc0g 17321  Grpcgrp 18748  SubGrpcsubg 18922  1rcur 19913  Ringcrg 19964  SubRingcsubrg 20218   mPwSer cmps 21306   mPoly cmpl 21308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-psr 21311  df-mpl 21313
This theorem is referenced by:  mpl1  21416  mplring  21424  mplcrng  21426  mplassa  21427  subrgmpl  21433  mplbas2  21443  subrgasclcl  21475  mplind  21478  evlseu  21493  ply1subrg  21568
  Copyright terms: Public domain W3C validator