| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplsubrg | Structured version Visualization version GIF version | ||
| Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mplsubg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplsubg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplsubg.u | ⊢ 𝑈 = (Base‘𝑃) |
| mplsubg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mpllss.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| mplsubrg | ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | mplsubg.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | mplsubg.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
| 4 | mplsubg.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | mpllss.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | ringgrp 20164 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | 1, 2, 3, 4, 7 | mplsubg 21948 | . 2 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) |
| 9 | 1, 4, 5 | psrring 21916 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 10 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 11 | eqid 2733 | . . . . 5 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 12 | 10, 11 | ringidcl 20191 | . . . 4 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 13 | 9, 12 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 14 | eqid 2733 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 15 | eqid 2733 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 16 | eqid 2733 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 17 | 1, 4, 5, 14, 15, 16, 11 | psr1 21917 | . . . 4 ⊢ (𝜑 → (1r‘𝑆) = (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) |
| 18 | ovex 7388 | . . . . . . . 8 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 19 | 18 | mptrabex 7168 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V |
| 20 | funmpt 6527 | . . . . . . 7 ⊢ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) | |
| 21 | fvex 6844 | . . . . . . 7 ⊢ (0g‘𝑅) ∈ V | |
| 22 | 19, 20, 21 | 3pm3.2i 1340 | . . . . . 6 ⊢ ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V) |
| 23 | 22 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V)) |
| 24 | snfi 8976 | . . . . . 6 ⊢ {(𝐼 × {0})} ∈ Fin | |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → {(𝐼 × {0})} ∈ Fin) |
| 26 | eldifsni 4743 | . . . . . . . 8 ⊢ (𝑘 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})}) → 𝑘 ≠ (𝐼 × {0})) | |
| 27 | 26 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → 𝑘 ≠ (𝐼 × {0})) |
| 28 | ifnefalse 4488 | . . . . . . 7 ⊢ (𝑘 ≠ (𝐼 × {0}) → if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) | |
| 29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 30 | 18 | rabex 5281 | . . . . . . 7 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
| 31 | 30 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
| 32 | 29, 31 | suppss2 8139 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {(𝐼 × {0})}) |
| 33 | suppssfifsupp 9275 | . . . . 5 ⊢ ((((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧ ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {(𝐼 × {0})})) → (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) | |
| 34 | 23, 25, 32, 33 | syl12anc 836 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) |
| 35 | 17, 34 | eqbrtrd 5117 | . . 3 ⊢ (𝜑 → (1r‘𝑆) finSupp (0g‘𝑅)) |
| 36 | 2, 1, 10, 15, 3 | mplelbas 21937 | . . 3 ⊢ ((1r‘𝑆) ∈ 𝑈 ↔ ((1r‘𝑆) ∈ (Base‘𝑆) ∧ (1r‘𝑆) finSupp (0g‘𝑅))) |
| 37 | 13, 35, 36 | sylanbrc 583 | . 2 ⊢ (𝜑 → (1r‘𝑆) ∈ 𝑈) |
| 38 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐼 ∈ 𝑊) |
| 39 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑅 ∈ Ring) |
| 40 | eqid 2733 | . . . 4 ⊢ ( ∘f + “ ((𝑥 supp (0g‘𝑅)) × (𝑦 supp (0g‘𝑅)))) = ( ∘f + “ ((𝑥 supp (0g‘𝑅)) × (𝑦 supp (0g‘𝑅)))) | |
| 41 | eqid 2733 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 42 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝑈) | |
| 43 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝑈) | |
| 44 | 1, 2, 3, 38, 39, 14, 15, 40, 41, 42, 43 | mplsubrglem 21950 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑈) |
| 45 | 44 | ralrimivva 3176 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 (𝑥(.r‘𝑆)𝑦) ∈ 𝑈) |
| 46 | eqid 2733 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 47 | 10, 11, 46 | issubrg2 20516 | . . 3 ⊢ (𝑆 ∈ Ring → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r‘𝑆) ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 (𝑥(.r‘𝑆)𝑦) ∈ 𝑈))) |
| 48 | 9, 47 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r‘𝑆) ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 (𝑥(.r‘𝑆)𝑦) ∈ 𝑈))) |
| 49 | 8, 37, 45, 48 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 {crab 3396 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 ifcif 4476 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 × cxp 5619 ◡ccnv 5620 “ cima 5624 Fun wfun 6483 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 supp csupp 8099 ↑m cmap 8759 Fincfn 8879 finSupp cfsupp 9256 0cc0 11017 + caddc 11020 ℕcn 12136 ℕ0cn0 12392 Basecbs 17127 .rcmulr 17169 0gc0g 17350 Grpcgrp 18854 SubGrpcsubg 19041 1rcur 20107 Ringcrg 20159 SubRingcsubrg 20493 mPwSer cmps 21851 mPoly cmpl 21853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-gsum 17353 df-prds 17358 df-pws 17360 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-subrng 20470 df-subrg 20494 df-psr 21856 df-mpl 21858 |
| This theorem is referenced by: mpl1 21958 mplring 21965 mplcrng 21967 mplassa 21968 subrgmpl 21978 mplbas2 21988 subrgasclcl 22013 mplind 22016 evlseu 22029 ply1subrg 22129 mplvrpmrhm 33640 |
| Copyright terms: Public domain | W3C validator |