|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mplsubrg | Structured version Visualization version GIF version | ||
| Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| mplsubg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | 
| mplsubg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) | 
| mplsubg.u | ⊢ 𝑈 = (Base‘𝑃) | 
| mplsubg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) | 
| mpllss.r | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| Ref | Expression | 
|---|---|
| mplsubrg | ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mplsubg.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | mplsubg.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | mplsubg.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
| 4 | mplsubg.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | mpllss.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | ringgrp 20236 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 8 | 1, 2, 3, 4, 7 | mplsubg 22023 | . 2 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) | 
| 9 | 1, 4, 5 | psrring 21991 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) | 
| 10 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 11 | eqid 2736 | . . . . 5 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 12 | 10, 11 | ringidcl 20263 | . . . 4 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ (Base‘𝑆)) | 
| 13 | 9, 12 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) | 
| 14 | eqid 2736 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 15 | eqid 2736 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 16 | eqid 2736 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 17 | 1, 4, 5, 14, 15, 16, 11 | psr1 21992 | . . . 4 ⊢ (𝜑 → (1r‘𝑆) = (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)))) | 
| 18 | ovex 7465 | . . . . . . . 8 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 19 | 18 | mptrabex 7246 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V | 
| 20 | funmpt 6603 | . . . . . . 7 ⊢ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) | |
| 21 | fvex 6918 | . . . . . . 7 ⊢ (0g‘𝑅) ∈ V | |
| 22 | 19, 20, 21 | 3pm3.2i 1339 | . . . . . 6 ⊢ ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V) | 
| 23 | 22 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V)) | 
| 24 | snfi 9084 | . . . . . 6 ⊢ {(𝐼 × {0})} ∈ Fin | |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → {(𝐼 × {0})} ∈ Fin) | 
| 26 | eldifsni 4789 | . . . . . . . 8 ⊢ (𝑘 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})}) → 𝑘 ≠ (𝐼 × {0})) | |
| 27 | 26 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → 𝑘 ≠ (𝐼 × {0})) | 
| 28 | ifnefalse 4536 | . . . . . . 7 ⊢ (𝑘 ≠ (𝐼 × {0}) → if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) | |
| 29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ {(𝐼 × {0})})) → if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) | 
| 30 | 18 | rabex 5338 | . . . . . . 7 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V | 
| 31 | 30 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) | 
| 32 | 29, 31 | suppss2 8226 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {(𝐼 × {0})}) | 
| 33 | suppssfifsupp 9421 | . . . . 5 ⊢ ((((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧ ((𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {(𝐼 × {0})})) → (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) | |
| 34 | 23, 25, 32, 33 | syl12anc 836 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ if(𝑘 = (𝐼 × {0}), (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) | 
| 35 | 17, 34 | eqbrtrd 5164 | . . 3 ⊢ (𝜑 → (1r‘𝑆) finSupp (0g‘𝑅)) | 
| 36 | 2, 1, 10, 15, 3 | mplelbas 22012 | . . 3 ⊢ ((1r‘𝑆) ∈ 𝑈 ↔ ((1r‘𝑆) ∈ (Base‘𝑆) ∧ (1r‘𝑆) finSupp (0g‘𝑅))) | 
| 37 | 13, 35, 36 | sylanbrc 583 | . 2 ⊢ (𝜑 → (1r‘𝑆) ∈ 𝑈) | 
| 38 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝐼 ∈ 𝑊) | 
| 39 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑅 ∈ Ring) | 
| 40 | eqid 2736 | . . . 4 ⊢ ( ∘f + “ ((𝑥 supp (0g‘𝑅)) × (𝑦 supp (0g‘𝑅)))) = ( ∘f + “ ((𝑥 supp (0g‘𝑅)) × (𝑦 supp (0g‘𝑅)))) | |
| 41 | eqid 2736 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 42 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝑈) | |
| 43 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝑈) | |
| 44 | 1, 2, 3, 38, 39, 14, 15, 40, 41, 42, 43 | mplsubrglem 22025 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈)) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑈) | 
| 45 | 44 | ralrimivva 3201 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 (𝑥(.r‘𝑆)𝑦) ∈ 𝑈) | 
| 46 | eqid 2736 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 47 | 10, 11, 46 | issubrg2 20593 | . . 3 ⊢ (𝑆 ∈ Ring → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r‘𝑆) ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 (𝑥(.r‘𝑆)𝑦) ∈ 𝑈))) | 
| 48 | 9, 47 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ (SubRing‘𝑆) ↔ (𝑈 ∈ (SubGrp‘𝑆) ∧ (1r‘𝑆) ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 (𝑥(.r‘𝑆)𝑦) ∈ 𝑈))) | 
| 49 | 8, 37, 45, 48 | mpbir3and 1342 | 1 ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑆)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 {crab 3435 Vcvv 3479 ∖ cdif 3947 ⊆ wss 3950 ifcif 4524 {csn 4625 class class class wbr 5142 ↦ cmpt 5224 × cxp 5682 ◡ccnv 5683 “ cima 5687 Fun wfun 6554 ‘cfv 6560 (class class class)co 7432 ∘f cof 7696 supp csupp 8186 ↑m cmap 8867 Fincfn 8986 finSupp cfsupp 9402 0cc0 11156 + caddc 11159 ℕcn 12267 ℕ0cn0 12528 Basecbs 17248 .rcmulr 17299 0gc0g 17485 Grpcgrp 18952 SubGrpcsubg 19139 1rcur 20179 Ringcrg 20231 SubRingcsubrg 20570 mPwSer cmps 21925 mPoly cmpl 21927 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-mulg 19087 df-subg 19142 df-ghm 19232 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-subrng 20547 df-subrg 20571 df-psr 21930 df-mpl 21932 | 
| This theorem is referenced by: mpl1 22033 mplring 22040 mplcrng 22042 mplassa 22043 subrgmpl 22051 mplbas2 22061 subrgasclcl 22092 mplind 22095 evlseu 22108 ply1subrg 22200 | 
| Copyright terms: Public domain | W3C validator |