Step | Hyp | Ref
| Expression |
1 | | psrring.s |
. . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | psrring.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
3 | | psrring.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | | psrass.d |
. . 3
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
5 | | psrass.t |
. . 3
⊢ × =
(.r‘𝑆) |
6 | | psrass.b |
. . 3
⊢ 𝐵 = (Base‘𝑆) |
7 | | psrass.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
8 | | psrass.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
9 | | psrass.k |
. . 3
⊢ 𝐾 = (Base‘𝑅) |
10 | | psrass.n |
. . 3
⊢ · = (
·𝑠 ‘𝑆) |
11 | | psrass.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝐾) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | psrass23l 21910 |
. 2
⊢ (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
13 | | eqid 2728 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
14 | | eqid 2728 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
15 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝐴 ∈ 𝐾) |
16 | 15, 9 | eleqtrdi 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝐴 ∈ (Base‘𝑅)) |
17 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝐴 ∈ (Base‘𝑅)) |
18 | 8 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑌 ∈ 𝐵) |
19 | | ssrab2 4075 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ⊆ 𝐷 |
20 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} |
21 | 4, 20 | psrbagconcl 21867 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝐷 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
22 | 21 | adantll 713 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
23 | 19, 22 | sselid 3978 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑥) ∈ 𝐷) |
24 | 1, 10, 13, 6, 14, 4, 17, 18, 23 | psrvscaval 21893 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝐴 · 𝑌)‘(𝑘 ∘f − 𝑥)) = (𝐴(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) |
25 | 24 | oveq2d 7436 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)((𝐴 · 𝑌)‘(𝑘 ∘f − 𝑥))) = ((𝑋‘𝑥)(.r‘𝑅)(𝐴(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) |
26 | 7 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑋 ∈ 𝐵) |
27 | 1, 13, 4, 6, 26 | psrelbas 21879 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑋:𝐷⟶(Base‘𝑅)) |
28 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
29 | 19, 28 | sselid 3978 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑥 ∈ 𝐷) |
30 | 27, 29 | ffvelcdmd 7095 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
31 | 1, 13, 4, 6, 18 | psrelbas 21879 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑌:𝐷⟶(Base‘𝑅)) |
32 | 31, 23 | ffvelcdmd 7095 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → (𝑌‘(𝑘 ∘f − 𝑥)) ∈ (Base‘𝑅)) |
33 | | psrcom.c |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ CRing) |
34 | 33 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑅 ∈ CRing) |
35 | 13, 14 | crngcom 20191 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r‘𝑅)𝑣) = (𝑣(.r‘𝑅)𝑢)) |
36 | 35 | 3expb 1118 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅))) → (𝑢(.r‘𝑅)𝑣) = (𝑣(.r‘𝑅)𝑢)) |
37 | 34, 36 | sylan 579 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅))) → (𝑢(.r‘𝑅)𝑣) = (𝑣(.r‘𝑅)𝑢)) |
38 | 3 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
39 | 13, 14 | ringass 20193 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑤 ∈ (Base‘𝑅))) → ((𝑢(.r‘𝑅)𝑣)(.r‘𝑅)𝑤) = (𝑢(.r‘𝑅)(𝑣(.r‘𝑅)𝑤))) |
40 | 38, 39 | sylan 579 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑤 ∈ (Base‘𝑅))) → ((𝑢(.r‘𝑅)𝑣)(.r‘𝑅)𝑤) = (𝑢(.r‘𝑅)(𝑣(.r‘𝑅)𝑤))) |
41 | 30, 17, 32, 37, 40 | caov12d 7642 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)(𝐴(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) = (𝐴(.r‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) |
42 | 25, 41 | eqtrd 2768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)((𝐴 · 𝑌)‘(𝑘 ∘f − 𝑥))) = (𝐴(.r‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) |
43 | 42 | mpteq2dva 5248 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)((𝐴 · 𝑌)‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (𝐴(.r‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))) |
44 | 43 | oveq2d 7436 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)((𝐴 · 𝑌)‘(𝑘 ∘f − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (𝐴(.r‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
45 | | eqid 2728 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
46 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ Ring) |
47 | 4 | psrbaglefi 21865 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐷 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
48 | 47 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin) |
49 | 13, 14, 38, 30, 32 | ringcld 20199 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))) ∈ (Base‘𝑅)) |
50 | | ovex 7453 |
. . . . . . . . . . 11
⊢
(ℕ0 ↑m 𝐼) ∈ V |
51 | 4, 50 | rabex2 5336 |
. . . . . . . . . 10
⊢ 𝐷 ∈ V |
52 | 51 | mptrabex 7237 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∈ V |
53 | | funmpt 6591 |
. . . . . . . . 9
⊢ Fun
(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) |
54 | | fvex 6910 |
. . . . . . . . 9
⊢
(0g‘𝑅) ∈ V |
55 | 52, 53, 54 | 3pm3.2i 1337 |
. . . . . . . 8
⊢ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∧
(0g‘𝑅)
∈ V) |
56 | 55 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∧
(0g‘𝑅)
∈ V)) |
57 | | suppssdm 8182 |
. . . . . . . . 9
⊢ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) supp
(0g‘𝑅))
⊆ dom (𝑥 ∈
{𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) |
58 | | eqid 2728 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) |
59 | 58 | dmmptss 6245 |
. . . . . . . . 9
⊢ dom
(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ⊆ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} |
60 | 57, 59 | sstri 3989 |
. . . . . . . 8
⊢ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) supp
(0g‘𝑅))
⊆ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} |
61 | 60 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) supp
(0g‘𝑅))
⊆ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘}) |
62 | | suppssfifsupp 9404 |
. . . . . . 7
⊢ ((((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) ∧
(0g‘𝑅)
∈ V) ∧ ({𝑦 ∈
𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ∈ Fin ∧ ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) supp
(0g‘𝑅))
⊆ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘})) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) finSupp
(0g‘𝑅)) |
63 | 56, 48, 61, 62 | syl12anc 836 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))) finSupp
(0g‘𝑅)) |
64 | 13, 45, 14, 46, 48, 16, 49, 63 | gsummulc2 20253 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ (𝐴(.r‘𝑅)((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))) = (𝐴(.r‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
65 | 44, 64 | eqtrd 2768 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)((𝐴 · 𝑌)‘(𝑘 ∘f − 𝑥))))) = (𝐴(.r‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
66 | 65 | mpteq2dva 5248 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)((𝐴 · 𝑌)‘(𝑘 ∘f − 𝑥)))))) = (𝑘 ∈ 𝐷 ↦ (𝐴(.r‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))))) |
67 | 1, 10, 9, 6, 3, 11,
8 | psrvscacl 21894 |
. . . 4
⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝐵) |
68 | 1, 6, 14, 5, 4, 7,
67 | psrmulfval 21886 |
. . 3
⊢ (𝜑 → (𝑋 × (𝐴 · 𝑌)) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)((𝐴 · 𝑌)‘(𝑘 ∘f − 𝑥))))))) |
69 | 1, 6, 5, 3, 7, 8 | psrmulcl 21889 |
. . . . 5
⊢ (𝜑 → (𝑋 × 𝑌) ∈ 𝐵) |
70 | 1, 10, 9, 6, 14, 4,
11, 69 | psrvsca 21892 |
. . . 4
⊢ (𝜑 → (𝐴 · (𝑋 × 𝑌)) = ((𝐷 × {𝐴}) ∘f
(.r‘𝑅)(𝑋 × 𝑌))) |
71 | 51 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ V) |
72 | | ovex 7453 |
. . . . . 6
⊢ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) ∈ V |
73 | 72 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))) ∈ V) |
74 | | fconstmpt 5740 |
. . . . . 6
⊢ (𝐷 × {𝐴}) = (𝑘 ∈ 𝐷 ↦ 𝐴) |
75 | 74 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐷 × {𝐴}) = (𝑘 ∈ 𝐷 ↦ 𝐴)) |
76 | 1, 6, 14, 5, 4, 7,
8 | psrmulfval 21886 |
. . . . 5
⊢ (𝜑 → (𝑋 × 𝑌) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥))))))) |
77 | 71, 15, 73, 75, 76 | offval2 7705 |
. . . 4
⊢ (𝜑 → ((𝐷 × {𝐴}) ∘f
(.r‘𝑅)(𝑋 × 𝑌)) = (𝑘 ∈ 𝐷 ↦ (𝐴(.r‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))))) |
78 | 70, 77 | eqtrd 2768 |
. . 3
⊢ (𝜑 → (𝐴 · (𝑋 × 𝑌)) = (𝑘 ∈ 𝐷 ↦ (𝐴(.r‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑥)))))))) |
79 | 66, 68, 78 | 3eqtr4d 2778 |
. 2
⊢ (𝜑 → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))) |
80 | 12, 79 | jca 511 |
1
⊢ (𝜑 → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))) |