MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass23 Structured version   Visualization version   GIF version

Theorem psrass23 19733
Description: Associative identities for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 25-Nov-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrcom.c (𝜑𝑅 ∈ CRing)
psrass.k 𝐾 = (Base‘𝑅)
psrass.n · = ( ·𝑠𝑆)
psrass.a (𝜑𝐴𝐾)
Assertion
Ref Expression
psrass23 (𝜑 → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   × (𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrass23
Dummy variables 𝑥 𝑘 𝑦 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psrring.i . . 3 (𝜑𝐼𝑉)
3 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
4 psrass.d . . 3 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psrass.t . . 3 × = (.r𝑆)
6 psrass.b . . 3 𝐵 = (Base‘𝑆)
7 psrass.x . . 3 (𝜑𝑋𝐵)
8 psrass.y . . 3 (𝜑𝑌𝐵)
9 psrass.k . . 3 𝐾 = (Base‘𝑅)
10 psrass.n . . 3 · = ( ·𝑠𝑆)
11 psrass.a . . 3 (𝜑𝐴𝐾)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11psrass23l 19731 . 2 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
13 eqid 2799 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2799 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
1511adantr 473 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → 𝐴𝐾)
1615, 9syl6eleq 2888 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝐴 ∈ (Base‘𝑅))
1716adantr 473 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝐴 ∈ (Base‘𝑅))
188ad2antrr 718 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑌𝐵)
19 ssrab2 3883 . . . . . . . . . . 11 {𝑦𝐷𝑦𝑟𝑘} ⊆ 𝐷
202ad2antrr 718 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝐼𝑉)
21 simplr 786 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑘𝐷)
22 simpr 478 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘})
23 eqid 2799 . . . . . . . . . . . . 13 {𝑦𝐷𝑦𝑟𝑘} = {𝑦𝐷𝑦𝑟𝑘}
244, 23psrbagconcl 19696 . . . . . . . . . . . 12 ((𝐼𝑉𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ {𝑦𝐷𝑦𝑟𝑘})
2520, 21, 22, 24syl3anc 1491 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ {𝑦𝐷𝑦𝑟𝑘})
2619, 25sseldi 3796 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ 𝐷)
271, 10, 13, 6, 14, 4, 17, 18, 26psrvscaval 19715 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝐴 · 𝑌)‘(𝑘𝑓𝑥)) = (𝐴(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
2827oveq2d 6894 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))) = ((𝑋𝑥)(.r𝑅)(𝐴(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
297ad2antrr 718 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑋𝐵)
301, 13, 4, 6, 29psrelbas 19702 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
3119, 22sseldi 3796 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥𝐷)
3230, 31ffvelrnd 6586 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
331, 13, 4, 6, 18psrelbas 19702 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
3433, 26ffvelrnd 6586 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅))
35 psrcom.c . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
3635ad2antrr 718 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑅 ∈ CRing)
3713, 14crngcom 18878 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
38373expb 1150 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅))) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
3936, 38sylan 576 . . . . . . . . 9 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅))) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
403ad2antrr 718 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑅 ∈ Ring)
4113, 14ringass 18880 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑤 ∈ (Base‘𝑅))) → ((𝑢(.r𝑅)𝑣)(.r𝑅)𝑤) = (𝑢(.r𝑅)(𝑣(.r𝑅)𝑤)))
4240, 41sylan 576 . . . . . . . . 9 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑤 ∈ (Base‘𝑅))) → ((𝑢(.r𝑅)𝑣)(.r𝑅)𝑤) = (𝑢(.r𝑅)(𝑣(.r𝑅)𝑤)))
4332, 17, 34, 39, 42caov12d 7089 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)(𝐴(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
4428, 43eqtrd 2833 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
4544mpteq2dva 4937 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))
4645oveq2d 6894 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
47 eqid 2799 . . . . . 6 (0g𝑅) = (0g𝑅)
48 eqid 2799 . . . . . 6 (+g𝑅) = (+g𝑅)
493adantr 473 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
504psrbaglefi 19695 . . . . . . 7 ((𝐼𝑉𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
512, 50sylan 576 . . . . . 6 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
5213, 14ringcl 18877 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
5340, 32, 34, 52syl3anc 1491 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
54 ovex 6910 . . . . . . . . . . 11 (ℕ0𝑚 𝐼) ∈ V
554, 54rabex2 5009 . . . . . . . . . 10 𝐷 ∈ V
5655mptrabex 6717 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V
57 funmpt 6139 . . . . . . . . 9 Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
58 fvex 6424 . . . . . . . . 9 (0g𝑅) ∈ V
5956, 57, 583pm3.2i 1439 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V)
6059a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V))
61 suppssdm 7545 . . . . . . . . 9 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
62 eqid 2799 . . . . . . . . . 10 (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
6362dmmptss 5850 . . . . . . . . 9 dom (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ⊆ {𝑦𝐷𝑦𝑟𝑘}
6461, 63sstri 3807 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘}
6564a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘})
66 suppssfifsupp 8532 . . . . . . 7 ((((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑦𝐷𝑦𝑟𝑘} ∈ Fin ∧ ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘})) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) finSupp (0g𝑅))
6760, 51, 65, 66syl12anc 866 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) finSupp (0g𝑅))
6813, 47, 48, 14, 49, 51, 16, 53, 67gsummulc2 18923 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
6946, 68eqtrd 2833 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
7069mpteq2dva 4937 . . 3 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥)))))) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
711, 10, 9, 6, 3, 11, 8psrvscacl 19716 . . . 4 (𝜑 → (𝐴 · 𝑌) ∈ 𝐵)
721, 6, 14, 5, 4, 7, 71psrmulfval 19708 . . 3 (𝜑 → (𝑋 × (𝐴 · 𝑌)) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘𝑓𝑥)))))))
731, 6, 5, 3, 7, 8psrmulcl 19711 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
741, 10, 9, 6, 14, 4, 11, 73psrvsca 19714 . . . 4 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = ((𝐷 × {𝐴}) ∘𝑓 (.r𝑅)(𝑋 × 𝑌)))
7555a1i 11 . . . . 5 (𝜑𝐷 ∈ V)
76 ovex 6910 . . . . . 6 (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) ∈ V
7776a1i 11 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) ∈ V)
78 fconstmpt 5368 . . . . . 6 (𝐷 × {𝐴}) = (𝑘𝐷𝐴)
7978a1i 11 . . . . 5 (𝜑 → (𝐷 × {𝐴}) = (𝑘𝐷𝐴))
801, 6, 14, 5, 4, 7, 8psrmulfval 19708 . . . . 5 (𝜑 → (𝑋 × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
8175, 15, 77, 79, 80offval2 7148 . . . 4 (𝜑 → ((𝐷 × {𝐴}) ∘𝑓 (.r𝑅)(𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
8274, 81eqtrd 2833 . . 3 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
8370, 72, 823eqtr4d 2843 . 2 (𝜑 → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))
8412, 83jca 508 1 (𝜑 → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  {crab 3093  Vcvv 3385  wss 3769  {csn 4368   class class class wbr 4843  cmpt 4922   × cxp 5310  ccnv 5311  dom cdm 5312  cima 5315  Fun wfun 6095  cfv 6101  (class class class)co 6878  𝑓 cof 7129  𝑟 cofr 7130   supp csupp 7532  𝑚 cmap 8095  Fincfn 8195   finSupp cfsupp 8517  cle 10364  cmin 10556  cn 11312  0cn0 11580  Basecbs 16184  +gcplusg 16267  .rcmulr 16268   ·𝑠 cvsca 16271  0gc0g 16415   Σg cgsu 16416  Ringcrg 18863  CRingccrg 18864   mPwSer cmps 19674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-ofr 7132  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-seq 13056  df-hash 13371  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-tset 16286  df-0g 16417  df-gsum 16418  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-mhm 17650  df-grp 17741  df-minusg 17742  df-ghm 17971  df-cntz 18062  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-cring 18866  df-psr 19679
This theorem is referenced by:  psrassa  19737
  Copyright terms: Public domain W3C validator