MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass23 Structured version   Visualization version   GIF version

Theorem psrass23 21885
Description: Associative identities for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 25-Nov-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrcom.c (𝜑𝑅 ∈ CRing)
psrass.k 𝐾 = (Base‘𝑅)
psrass.n · = ( ·𝑠𝑆)
psrass.a (𝜑𝐴𝐾)
Assertion
Ref Expression
psrass23 (𝜑 → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   × (𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrass23
Dummy variables 𝑥 𝑘 𝑦 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psrring.i . . 3 (𝜑𝐼𝑉)
3 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
4 psrass.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psrass.t . . 3 × = (.r𝑆)
6 psrass.b . . 3 𝐵 = (Base‘𝑆)
7 psrass.x . . 3 (𝜑𝑋𝐵)
8 psrass.y . . 3 (𝜑𝑌𝐵)
9 psrass.k . . 3 𝐾 = (Base‘𝑅)
10 psrass.n . . 3 · = ( ·𝑠𝑆)
11 psrass.a . . 3 (𝜑𝐴𝐾)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11psrass23l 21883 . 2 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
13 eqid 2730 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2730 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
1511adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → 𝐴𝐾)
1615, 9eleqtrdi 2839 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝐴 ∈ (Base‘𝑅))
1716adantr 480 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐴 ∈ (Base‘𝑅))
188ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌𝐵)
19 ssrab2 4046 . . . . . . . . . . 11 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
20 eqid 2730 . . . . . . . . . . . . 13 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
214, 20psrbagconcl 21843 . . . . . . . . . . . 12 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
2221adantll 714 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
2319, 22sselid 3947 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
241, 10, 13, 6, 14, 4, 17, 18, 23psrvscaval 21866 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝐴 · 𝑌)‘(𝑘f𝑥)) = (𝐴(.r𝑅)(𝑌‘(𝑘f𝑥))))
2524oveq2d 7406 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘f𝑥))) = ((𝑋𝑥)(.r𝑅)(𝐴(.r𝑅)(𝑌‘(𝑘f𝑥)))))
267ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋𝐵)
271, 13, 4, 6, 26psrelbas 21850 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
28 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
2919, 28sselid 3947 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
3027, 29ffvelcdmd 7060 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
311, 13, 4, 6, 18psrelbas 21850 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
3231, 23ffvelcdmd 7060 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
33 psrcom.c . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
3433ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ CRing)
3513, 14crngcom 20167 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
36353expb 1120 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅))) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
3734, 36sylan 580 . . . . . . . . 9 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅))) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
383ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
3913, 14ringass 20169 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑤 ∈ (Base‘𝑅))) → ((𝑢(.r𝑅)𝑣)(.r𝑅)𝑤) = (𝑢(.r𝑅)(𝑣(.r𝑅)𝑤)))
4038, 39sylan 580 . . . . . . . . 9 ((((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑤 ∈ (Base‘𝑅))) → ((𝑢(.r𝑅)𝑣)(.r𝑅)𝑤) = (𝑢(.r𝑅)(𝑣(.r𝑅)𝑤)))
4130, 17, 32, 37, 40caov12d 7613 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝐴(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
4225, 41eqtrd 2765 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘f𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
4342mpteq2dva 5203 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))
4443oveq2d 7406 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
45 eqid 2730 . . . . . 6 (0g𝑅) = (0g𝑅)
463adantr 480 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
474psrbaglefi 21842 . . . . . . 7 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
4847adantl 481 . . . . . 6 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
4913, 14, 38, 30, 32ringcld 20176 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
50 ovex 7423 . . . . . . . . . . 11 (ℕ0m 𝐼) ∈ V
514, 50rabex2 5299 . . . . . . . . . 10 𝐷 ∈ V
5251mptrabex 7202 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V
53 funmpt 6557 . . . . . . . . 9 Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
54 fvex 6874 . . . . . . . . 9 (0g𝑅) ∈ V
5552, 53, 543pm3.2i 1340 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V)
5655a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V))
57 suppssdm 8159 . . . . . . . . 9 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
58 eqid 2730 . . . . . . . . . 10 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
5958dmmptss 6217 . . . . . . . . 9 dom (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ⊆ {𝑦𝐷𝑦r𝑘}
6057, 59sstri 3959 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘}
6160a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘})
62 suppssfifsupp 9338 . . . . . . 7 ((((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑦𝐷𝑦r𝑘} ∈ Fin ∧ ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘})) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
6356, 48, 61, 62syl12anc 836 . . . . . 6 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
6413, 45, 14, 46, 48, 16, 49, 63gsummulc2 20233 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
6544, 64eqtrd 2765 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘f𝑥))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
6665mpteq2dva 5203 . . 3 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
671, 10, 9, 6, 3, 11, 8psrvscacl 21867 . . . 4 (𝜑 → (𝐴 · 𝑌) ∈ 𝐵)
681, 6, 14, 5, 4, 7, 67psrmulfval 21859 . . 3 (𝜑 → (𝑋 × (𝐴 · 𝑌)) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)((𝐴 · 𝑌)‘(𝑘f𝑥)))))))
691, 6, 5, 3, 7, 8psrmulcl 21862 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
701, 10, 9, 6, 14, 4, 11, 69psrvsca 21865 . . . 4 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = ((𝐷 × {𝐴}) ∘f (.r𝑅)(𝑋 × 𝑌)))
7151a1i 11 . . . . 5 (𝜑𝐷 ∈ V)
72 ovex 7423 . . . . . 6 (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) ∈ V
7372a1i 11 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) ∈ V)
74 fconstmpt 5703 . . . . . 6 (𝐷 × {𝐴}) = (𝑘𝐷𝐴)
7574a1i 11 . . . . 5 (𝜑 → (𝐷 × {𝐴}) = (𝑘𝐷𝐴))
761, 6, 14, 5, 4, 7, 8psrmulfval 21859 . . . . 5 (𝜑 → (𝑋 × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
7771, 15, 73, 75, 76offval2 7676 . . . 4 (𝜑 → ((𝐷 × {𝐴}) ∘f (.r𝑅)(𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
7870, 77eqtrd 2765 . . 3 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
7966, 68, 783eqtr4d 2775 . 2 (𝜑 → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))
8012, 79jca 511 1 (𝜑 → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  cima 5644  Fun wfun 6508  cfv 6514  (class class class)co 7390  f cof 7654  r cofr 7655   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  cle 11216  cmin 11412  cn 12193  0cn0 12449  Basecbs 17186  .rcmulr 17228   ·𝑠 cvsca 17231  0gc0g 17409   Σg cgsu 17410  Ringcrg 20149  CRingccrg 20150   mPwSer cmps 21820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-cring 20152  df-psr 21825
This theorem is referenced by:  psrassa  21889
  Copyright terms: Public domain W3C validator