| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nsg | Structured version Visualization version GIF version | ||
| Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| 0nsg.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| 0nsg | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nsg.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 2 | 1 | 0subg 19090 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
| 3 | elsni 4609 | . . . . . . . . 9 ⊢ (𝑦 ∈ { 0 } → 𝑦 = 0 ) | |
| 4 | 3 | ad2antll 729 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑦 = 0 ) |
| 5 | 4 | oveq2d 7406 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐺) 0 )) |
| 6 | eqid 2730 | . . . . . . . . 9 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | eqid 2730 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 8 | 6, 7, 1 | grprid 18907 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 9 | 8 | adantrr 717 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
| 10 | 5, 9 | eqtrd 2765 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺)𝑦) = 𝑥) |
| 11 | 10 | oveq1d 7405 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = (𝑥(-g‘𝐺)𝑥)) |
| 12 | eqid 2730 | . . . . . . 7 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 13 | 6, 1, 12 | grpsubid 18963 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(-g‘𝐺)𝑥) = 0 ) |
| 14 | 13 | adantrr 717 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(-g‘𝐺)𝑥) = 0 ) |
| 15 | 11, 14 | eqtrd 2765 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = 0 ) |
| 16 | ovex 7423 | . . . . 5 ⊢ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ V | |
| 17 | 16 | elsn 4607 | . . . 4 ⊢ (((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 } ↔ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = 0 ) |
| 18 | 15, 17 | sylibr 234 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 }) |
| 19 | 18 | ralrimivva 3181 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 }) |
| 20 | 6, 7, 12 | isnsg3 19099 | . 2 ⊢ ({ 0 } ∈ (NrmSGrp‘𝐺) ↔ ({ 0 } ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 })) |
| 21 | 2, 19, 20 | sylanbrc 583 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {csn 4592 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Grpcgrp 18872 -gcsg 18874 SubGrpcsubg 19059 NrmSGrpcnsg 19060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-nsg 19063 |
| This theorem is referenced by: 0idnsgd 19110 1nsgtrivd 19113 qus0subgadd 19138 ghmker 19181 2nsgsimpgd 20041 |
| Copyright terms: Public domain | W3C validator |