![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nsg | Structured version Visualization version GIF version |
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
0nsg.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
0nsg | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nsg.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
2 | 1 | 0subg 18954 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
3 | elsni 4604 | . . . . . . . . 9 ⊢ (𝑦 ∈ { 0 } → 𝑦 = 0 ) | |
4 | 3 | ad2antll 728 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑦 = 0 ) |
5 | 4 | oveq2d 7374 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐺) 0 )) |
6 | eqid 2737 | . . . . . . . . 9 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | eqid 2737 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
8 | 6, 7, 1 | grprid 18782 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
9 | 8 | adantrr 716 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
10 | 5, 9 | eqtrd 2777 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺)𝑦) = 𝑥) |
11 | 10 | oveq1d 7373 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = (𝑥(-g‘𝐺)𝑥)) |
12 | eqid 2737 | . . . . . . 7 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
13 | 6, 1, 12 | grpsubid 18832 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(-g‘𝐺)𝑥) = 0 ) |
14 | 13 | adantrr 716 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(-g‘𝐺)𝑥) = 0 ) |
15 | 11, 14 | eqtrd 2777 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = 0 ) |
16 | ovex 7391 | . . . . 5 ⊢ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ V | |
17 | 16 | elsn 4602 | . . . 4 ⊢ (((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 } ↔ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = 0 ) |
18 | 15, 17 | sylibr 233 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 }) |
19 | 18 | ralrimivva 3198 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 }) |
20 | 6, 7, 12 | isnsg3 18963 | . 2 ⊢ ({ 0 } ∈ (NrmSGrp‘𝐺) ↔ ({ 0 } ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 })) |
21 | 2, 19, 20 | sylanbrc 584 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3065 {csn 4587 ‘cfv 6497 (class class class)co 7358 Basecbs 17084 +gcplusg 17134 0gc0g 17322 Grpcgrp 18749 -gcsg 18751 SubGrpcsubg 18923 NrmSGrpcnsg 18924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-2 12217 df-sets 17037 df-slot 17055 df-ndx 17067 df-base 17085 df-ress 17114 df-plusg 17147 df-0g 17324 df-mgm 18498 df-sgrp 18547 df-mnd 18558 df-submnd 18603 df-grp 18752 df-minusg 18753 df-sbg 18754 df-subg 18926 df-nsg 18927 |
This theorem is referenced by: 0idnsgd 18974 1nsgtrivd 18977 ghmker 19035 2nsgsimpgd 19882 |
Copyright terms: Public domain | W3C validator |