![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nsg | Structured version Visualization version GIF version |
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
0nsg.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
0nsg | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nsg.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
2 | 1 | 0subg 19030 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
3 | elsni 4645 | . . . . . . . . 9 ⊢ (𝑦 ∈ { 0 } → 𝑦 = 0 ) | |
4 | 3 | ad2antll 727 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑦 = 0 ) |
5 | 4 | oveq2d 7424 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐺) 0 )) |
6 | eqid 2732 | . . . . . . . . 9 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | eqid 2732 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
8 | 6, 7, 1 | grprid 18852 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
9 | 8 | adantrr 715 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
10 | 5, 9 | eqtrd 2772 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺)𝑦) = 𝑥) |
11 | 10 | oveq1d 7423 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = (𝑥(-g‘𝐺)𝑥)) |
12 | eqid 2732 | . . . . . . 7 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
13 | 6, 1, 12 | grpsubid 18906 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(-g‘𝐺)𝑥) = 0 ) |
14 | 13 | adantrr 715 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(-g‘𝐺)𝑥) = 0 ) |
15 | 11, 14 | eqtrd 2772 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = 0 ) |
16 | ovex 7441 | . . . . 5 ⊢ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ V | |
17 | 16 | elsn 4643 | . . . 4 ⊢ (((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 } ↔ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = 0 ) |
18 | 15, 17 | sylibr 233 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 }) |
19 | 18 | ralrimivva 3200 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 }) |
20 | 6, 7, 12 | isnsg3 19039 | . 2 ⊢ ({ 0 } ∈ (NrmSGrp‘𝐺) ↔ ({ 0 } ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 })) |
21 | 2, 19, 20 | sylanbrc 583 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {csn 4628 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 0gc0g 17384 Grpcgrp 18818 -gcsg 18820 SubGrpcsubg 18999 NrmSGrpcnsg 19000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-grp 18821 df-minusg 18822 df-sbg 18823 df-subg 19002 df-nsg 19003 |
This theorem is referenced by: 0idnsgd 19050 1nsgtrivd 19053 qus0subgadd 19075 ghmker 19117 2nsgsimpgd 19971 |
Copyright terms: Public domain | W3C validator |