![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nsg | Structured version Visualization version GIF version |
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
0nsg.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
0nsg | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nsg.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
2 | 1 | 0subg 19070 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
3 | elsni 4638 | . . . . . . . . 9 ⊢ (𝑦 ∈ { 0 } → 𝑦 = 0 ) | |
4 | 3 | ad2antll 726 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → 𝑦 = 0 ) |
5 | 4 | oveq2d 7418 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐺) 0 )) |
6 | eqid 2724 | . . . . . . . . 9 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | eqid 2724 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
8 | 6, 7, 1 | grprid 18890 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
9 | 8 | adantrr 714 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺) 0 ) = 𝑥) |
10 | 5, 9 | eqtrd 2764 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(+g‘𝐺)𝑦) = 𝑥) |
11 | 10 | oveq1d 7417 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = (𝑥(-g‘𝐺)𝑥)) |
12 | eqid 2724 | . . . . . . 7 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
13 | 6, 1, 12 | grpsubid 18944 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(-g‘𝐺)𝑥) = 0 ) |
14 | 13 | adantrr 714 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → (𝑥(-g‘𝐺)𝑥) = 0 ) |
15 | 11, 14 | eqtrd 2764 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = 0 ) |
16 | ovex 7435 | . . . . 5 ⊢ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ V | |
17 | 16 | elsn 4636 | . . . 4 ⊢ (((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 } ↔ ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) = 0 ) |
18 | 15, 17 | sylibr 233 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ { 0 })) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 }) |
19 | 18 | ralrimivva 3192 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 }) |
20 | 6, 7, 12 | isnsg3 19079 | . 2 ⊢ ({ 0 } ∈ (NrmSGrp‘𝐺) ↔ ({ 0 } ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ { 0 } ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑥) ∈ { 0 })) |
21 | 2, 19, 20 | sylanbrc 582 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 {csn 4621 ‘cfv 6534 (class class class)co 7402 Basecbs 17145 +gcplusg 17198 0gc0g 17386 Grpcgrp 18855 -gcsg 18857 SubGrpcsubg 19039 NrmSGrpcnsg 19040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-0g 17388 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19042 df-nsg 19043 |
This theorem is referenced by: 0idnsgd 19090 1nsgtrivd 19093 qus0subgadd 19117 ghmker 19159 2nsgsimpgd 20016 |
Copyright terms: Public domain | W3C validator |