Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrleid | Structured version Visualization version GIF version |
Description: 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
xrleid | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . 4 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 862 | . . 3 ⊢ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴) |
3 | xrleloe 12860 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 257 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐴 ≤ 𝐴) |
5 | 4 | anidms 566 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 |
This theorem is referenced by: xrleidd 12868 xrmax1 12891 xrmax2 12892 xrmin1 12893 xrmin2 12894 xlemul1a 13004 iooid 13089 iccid 13106 icc0 13109 ubioc1 13114 lbico1 13115 lbicc2 13178 ubicc2 13179 snunioc 13194 limsupgord 15162 ledm 18289 lern 18290 letsr 18292 xrsxmet 23953 ismbfd 24784 xraddge02 31058 xrstos 31267 elicc3 34485 xreqle 42811 snunioo1 43004 |
Copyright terms: Public domain | W3C validator |