Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrleid | Structured version Visualization version GIF version |
Description: 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
xrleid | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ 𝐴 = 𝐴 | |
2 | 1 | olci 864 | . . 3 ⊢ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴) |
3 | xrleloe 12928 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 = 𝐴))) | |
4 | 2, 3 | mpbiri 258 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐴 ≤ 𝐴) |
5 | 4 | anidms 568 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 845 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 ℝ*cxr 11058 < clt 11059 ≤ cle 11060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-pre-lttri 10995 ax-pre-lttrn 10996 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 |
This theorem is referenced by: xrleidd 12936 xrmax1 12959 xrmax2 12960 xrmin1 12961 xrmin2 12962 xlemul1a 13072 iooid 13157 iccid 13174 icc0 13177 ubioc1 13182 lbico1 13183 lbicc2 13246 ubicc2 13247 snunioc 13262 limsupgord 15230 ledm 18357 lern 18358 letsr 18360 xrsxmet 24021 ismbfd 24852 xraddge02 31128 xrstos 31337 elicc3 34555 xreqle 43085 snunioo1 43279 |
Copyright terms: Public domain | W3C validator |