MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrleid Structured version   Visualization version   GIF version

Theorem xrleid 13071
Description: 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrleid (𝐴 ∈ ℝ*𝐴𝐴)

Proof of Theorem xrleid
StepHypRef Expression
1 eqid 2729 . . . 4 𝐴 = 𝐴
21olci 866 . . 3 (𝐴 < 𝐴𝐴 = 𝐴)
3 xrleloe 13064 . . 3 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴𝐴 ↔ (𝐴 < 𝐴𝐴 = 𝐴)))
42, 3mpbiri 258 . 2 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → 𝐴𝐴)
54anidms 566 1 (𝐴 ∈ ℝ*𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5095  *cxr 11167   < clt 11168  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174
This theorem is referenced by:  xrleidd  13072  xrmax1  13095  xrmax2  13096  xrmin1  13097  xrmin2  13098  xlemul1a  13208  iooid  13294  iccid  13311  icc0  13314  ubioc1  13320  lbico1  13321  lbicc2  13385  ubicc2  13386  snunioc  13401  limsupgord  15397  ledm  18514  lern  18515  letsr  18517  xrsxmet  24714  ismbfd  25556  xraddge02  32713  xrstos  32977  elicc3  36290  xreqle  45299  snunioo1  45494
  Copyright terms: Public domain W3C validator