MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrleid Structured version   Visualization version   GIF version

Theorem xrleid 12935
Description: 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrleid (𝐴 ∈ ℝ*𝐴𝐴)

Proof of Theorem xrleid
StepHypRef Expression
1 eqid 2736 . . . 4 𝐴 = 𝐴
21olci 864 . . 3 (𝐴 < 𝐴𝐴 = 𝐴)
3 xrleloe 12928 . . 3 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴𝐴 ↔ (𝐴 < 𝐴𝐴 = 𝐴)))
42, 3mpbiri 258 . 2 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → 𝐴𝐴)
54anidms 568 1 (𝐴 ∈ ℝ*𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 845   = wceq 1539  wcel 2104   class class class wbr 5081  *cxr 11058   < clt 11059  cle 11060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-pre-lttri 10995  ax-pre-lttrn 10996
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065
This theorem is referenced by:  xrleidd  12936  xrmax1  12959  xrmax2  12960  xrmin1  12961  xrmin2  12962  xlemul1a  13072  iooid  13157  iccid  13174  icc0  13177  ubioc1  13182  lbico1  13183  lbicc2  13246  ubicc2  13247  snunioc  13262  limsupgord  15230  ledm  18357  lern  18358  letsr  18360  xrsxmet  24021  ismbfd  24852  xraddge02  31128  xrstos  31337  elicc3  34555  xreqle  43085  snunioo1  43279
  Copyright terms: Public domain W3C validator