MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsizeindb1 Structured version   Visualization version   GIF version

Theorem cusgrsizeindb1 29303
Description: Base case of the induction in cusgrsize 29307. The size of a (complete) simple graph with 1 vertex is 0=((1-1)*1)/2. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 7-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgrsizeindb1 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = ((♯‘𝑉)C2))

Proof of Theorem cusgrsizeindb1
StepHypRef Expression
1 cusgrsizeindb0.v . . 3 𝑉 = (Vtx‘𝐺)
2 cusgrsizeindb0.e . . 3 𝐸 = (Edg‘𝐺)
31, 2usgr1v0e 29178 . 2 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0)
4 oveq1 7420 . . . . 5 ((♯‘𝑉) = 1 → ((♯‘𝑉)C2) = (1C2))
5 1nn0 12513 . . . . . 6 1 ∈ ℕ0
6 2z 12619 . . . . . 6 2 ∈ ℤ
7 1lt2 12408 . . . . . . 7 1 < 2
87olci 864 . . . . . 6 (2 < 0 ∨ 1 < 2)
9 bcval4 14293 . . . . . 6 ((1 ∈ ℕ0 ∧ 2 ∈ ℤ ∧ (2 < 0 ∨ 1 < 2)) → (1C2) = 0)
105, 6, 8, 9mp3an 1457 . . . . 5 (1C2) = 0
114, 10eqtrdi 2781 . . . 4 ((♯‘𝑉) = 1 → ((♯‘𝑉)C2) = 0)
1211eqeq2d 2736 . . 3 ((♯‘𝑉) = 1 → ((♯‘𝐸) = ((♯‘𝑉)C2) ↔ (♯‘𝐸) = 0))
1312adantl 480 . 2 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → ((♯‘𝐸) = ((♯‘𝑉)C2) ↔ (♯‘𝐸) = 0))
143, 13mpbird 256 1 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = ((♯‘𝑉)C2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098   class class class wbr 5144  cfv 6543  (class class class)co 7413  0cc0 11133  1c1 11134   < clt 11273  2c2 12292  0cn0 12497  cz 12583  Ccbc 14288  chash 14316  Vtxcvtx 28848  Edgcedg 28899  USGraphcusgr 29001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-fz 13512  df-bc 14289  df-hash 14317  df-edg 28900  df-uhgr 28910  df-upgr 28934  df-uspgr 29002  df-usgr 29003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator