Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lcm0val | Structured version Visualization version GIF version |
Description: The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 16226 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcm0val | ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12260 | . 2 ⊢ 0 ∈ ℤ | |
2 | lcmval 16225 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < ))) | |
3 | eqid 2738 | . . . . 5 ⊢ 0 = 0 | |
4 | 3 | olci 862 | . . . 4 ⊢ (𝑀 = 0 ∨ 0 = 0) |
5 | 4 | iftruei 4463 | . . 3 ⊢ if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < )) = 0 |
6 | 2, 5 | eqtrdi 2795 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = 0) |
7 | 1, 6 | mpan2 687 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 {crab 3067 ifcif 4456 class class class wbr 5070 (class class class)co 7255 infcinf 9130 ℝcr 10801 0cc0 10802 < clt 10940 ℕcn 11903 ℤcz 12249 ∥ cdvds 15891 lcm clcm 16221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-i2m1 10870 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-neg 11138 df-z 12250 df-lcm 16223 |
This theorem is referenced by: dvdslcm 16231 lcmeq0 16233 lcmcl 16234 lcmneg 16236 lcmgcd 16240 lcmdvds 16241 lcmid 16242 lcmftp 16269 lcmfunsnlem2 16273 |
Copyright terms: Public domain | W3C validator |