MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcm0val Structured version   Visualization version   GIF version

Theorem lcm0val 16527
Description: The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 16526 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcm0val (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)

Proof of Theorem lcm0val
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0z 12565 . 2 0 ∈ ℤ
2 lcmval 16525 . . 3 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < )))
3 eqid 2724 . . . . 5 0 = 0
43olci 863 . . . 4 (𝑀 = 0 ∨ 0 = 0)
54iftruei 4527 . . 3 if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < )) = 0
62, 5eqtrdi 2780 . 2 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = 0)
71, 6mpan2 688 1 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844   = wceq 1533  wcel 2098  {crab 3424  ifcif 4520   class class class wbr 5138  (class class class)co 7401  infcinf 9431  cr 11104  0cc0 11105   < clt 11244  cn 12208  cz 12554  cdvds 16193   lcm clcm 16521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-i2m1 11173  ax-rnegex 11176  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-neg 11443  df-z 12555  df-lcm 16523
This theorem is referenced by:  dvdslcm  16531  lcmeq0  16533  lcmcl  16534  lcmneg  16536  lcmgcd  16540  lcmdvds  16541  lcmid  16542  lcmftp  16569  lcmfunsnlem2  16573
  Copyright terms: Public domain W3C validator