MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcm0val Structured version   Visualization version   GIF version

Theorem lcm0val 16299
Description: The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 16298 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcm0val (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)

Proof of Theorem lcm0val
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0z 12330 . 2 0 ∈ ℤ
2 lcmval 16297 . . 3 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < )))
3 eqid 2738 . . . . 5 0 = 0
43olci 863 . . . 4 (𝑀 = 0 ∨ 0 = 0)
54iftruei 4466 . . 3 if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < )) = 0
62, 5eqtrdi 2794 . 2 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = 0)
71, 6mpan2 688 1 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  {crab 3068  ifcif 4459   class class class wbr 5074  (class class class)co 7275  infcinf 9200  cr 10870  0cc0 10871   < clt 11009  cn 11973  cz 12319  cdvds 15963   lcm clcm 16293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-i2m1 10939  ax-rnegex 10942  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-neg 11208  df-z 12320  df-lcm 16295
This theorem is referenced by:  dvdslcm  16303  lcmeq0  16305  lcmcl  16306  lcmneg  16308  lcmgcd  16312  lcmdvds  16313  lcmid  16314  lcmftp  16341  lcmfunsnlem2  16345
  Copyright terms: Public domain W3C validator