| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcm0val | Structured version Visualization version GIF version | ||
| Description: The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 16612 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| Ref | Expression |
|---|---|
| lcm0val | ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12599 | . 2 ⊢ 0 ∈ ℤ | |
| 2 | lcmval 16611 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < ))) | |
| 3 | eqid 2735 | . . . . 5 ⊢ 0 = 0 | |
| 4 | 3 | olci 866 | . . . 4 ⊢ (𝑀 = 0 ∨ 0 = 0) |
| 5 | 4 | iftruei 4507 | . . 3 ⊢ if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < )) = 0 |
| 6 | 2, 5 | eqtrdi 2786 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = 0) |
| 7 | 1, 6 | mpan2 691 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 {crab 3415 ifcif 4500 class class class wbr 5119 (class class class)co 7405 infcinf 9453 ℝcr 11128 0cc0 11129 < clt 11269 ℕcn 12240 ℤcz 12588 ∥ cdvds 16272 lcm clcm 16607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-i2m1 11197 ax-rnegex 11200 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-neg 11469 df-z 12589 df-lcm 16609 |
| This theorem is referenced by: dvdslcm 16617 lcmeq0 16619 lcmcl 16620 lcmneg 16622 lcmgcd 16626 lcmdvds 16627 lcmid 16628 lcmftp 16655 lcmfunsnlem2 16659 |
| Copyright terms: Public domain | W3C validator |