![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcm0val | Structured version Visualization version GIF version |
Description: The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 16640 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcm0val | ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12650 | . 2 ⊢ 0 ∈ ℤ | |
2 | lcmval 16639 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < ))) | |
3 | eqid 2740 | . . . . 5 ⊢ 0 = 0 | |
4 | 3 | olci 865 | . . . 4 ⊢ (𝑀 = 0 ∨ 0 = 0) |
5 | 4 | iftruei 4555 | . . 3 ⊢ if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < )) = 0 |
6 | 2, 5 | eqtrdi 2796 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = 0) |
7 | 1, 6 | mpan2 690 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 {crab 3443 ifcif 4548 class class class wbr 5166 (class class class)co 7448 infcinf 9510 ℝcr 11183 0cc0 11184 < clt 11324 ℕcn 12293 ℤcz 12639 ∥ cdvds 16302 lcm clcm 16635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-i2m1 11252 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-neg 11523 df-z 12640 df-lcm 16637 |
This theorem is referenced by: dvdslcm 16645 lcmeq0 16647 lcmcl 16648 lcmneg 16650 lcmgcd 16654 lcmdvds 16655 lcmid 16656 lcmftp 16683 lcmfunsnlem2 16687 |
Copyright terms: Public domain | W3C validator |