MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcm0val Structured version   Visualization version   GIF version

Theorem lcm0val 16151
Description: The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 16150 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcm0val (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)

Proof of Theorem lcm0val
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0z 12187 . 2 0 ∈ ℤ
2 lcmval 16149 . . 3 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < )))
3 eqid 2737 . . . . 5 0 = 0
43olci 866 . . . 4 (𝑀 = 0 ∨ 0 = 0)
54iftruei 4446 . . 3 if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < )) = 0
62, 5eqtrdi 2794 . 2 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = 0)
71, 6mpan2 691 1 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  {crab 3065  ifcif 4439   class class class wbr 5053  (class class class)co 7213  infcinf 9057  cr 10728  0cc0 10729   < clt 10867  cn 11830  cz 12176  cdvds 15815   lcm clcm 16145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-i2m1 10797  ax-rnegex 10800  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-ltxr 10872  df-neg 11065  df-z 12177  df-lcm 16147
This theorem is referenced by:  dvdslcm  16155  lcmeq0  16157  lcmcl  16158  lcmneg  16160  lcmgcd  16164  lcmdvds  16165  lcmid  16166  lcmftp  16193  lcmfunsnlem2  16197
  Copyright terms: Public domain W3C validator