Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lcm0val | Structured version Visualization version GIF version |
Description: The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 16298 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcm0val | ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12330 | . 2 ⊢ 0 ∈ ℤ | |
2 | lcmval 16297 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < ))) | |
3 | eqid 2738 | . . . . 5 ⊢ 0 = 0 | |
4 | 3 | olci 863 | . . . 4 ⊢ (𝑀 = 0 ∨ 0 = 0) |
5 | 4 | iftruei 4466 | . . 3 ⊢ if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < )) = 0 |
6 | 2, 5 | eqtrdi 2794 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = 0) |
7 | 1, 6 | mpan2 688 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 {crab 3068 ifcif 4459 class class class wbr 5074 (class class class)co 7275 infcinf 9200 ℝcr 10870 0cc0 10871 < clt 11009 ℕcn 11973 ℤcz 12319 ∥ cdvds 15963 lcm clcm 16293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-i2m1 10939 ax-rnegex 10942 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-neg 11208 df-z 12320 df-lcm 16295 |
This theorem is referenced by: dvdslcm 16303 lcmeq0 16305 lcmcl 16306 lcmneg 16308 lcmgcd 16312 lcmdvds 16313 lcmid 16314 lcmftp 16341 lcmfunsnlem2 16345 |
Copyright terms: Public domain | W3C validator |