| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcm0val | Structured version Visualization version GIF version | ||
| Description: The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 16570 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| Ref | Expression |
|---|---|
| lcm0val | ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12547 | . 2 ⊢ 0 ∈ ℤ | |
| 2 | lcmval 16569 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < ))) | |
| 3 | eqid 2730 | . . . . 5 ⊢ 0 = 0 | |
| 4 | 3 | olci 866 | . . . 4 ⊢ (𝑀 = 0 ∨ 0 = 0) |
| 5 | 4 | iftruei 4498 | . . 3 ⊢ if((𝑀 = 0 ∨ 0 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 0 ∥ 𝑛)}, ℝ, < )) = 0 |
| 6 | 2, 5 | eqtrdi 2781 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 lcm 0) = 0) |
| 7 | 1, 6 | mpan2 691 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {crab 3408 ifcif 4491 class class class wbr 5110 (class class class)co 7390 infcinf 9399 ℝcr 11074 0cc0 11075 < clt 11215 ℕcn 12193 ℤcz 12536 ∥ cdvds 16229 lcm clcm 16565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-i2m1 11143 ax-rnegex 11146 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-neg 11415 df-z 12537 df-lcm 16567 |
| This theorem is referenced by: dvdslcm 16575 lcmeq0 16577 lcmcl 16578 lcmneg 16580 lcmgcd 16584 lcmdvds 16585 lcmid 16586 lcmftp 16613 lcmfunsnlem2 16617 |
| Copyright terms: Public domain | W3C validator |