Proof of Theorem cdleme15b
Step | Hyp | Ref
| Expression |
1 | | cdleme15.c |
. . . . . . 7
⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
2 | 1 | oveq2i 7266 |
. . . . . 6
⊢ (𝑃 ∨ 𝐶) = (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) |
3 | | simp11l 1282 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝐾 ∈ HL) |
4 | | simp12l 1284 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑃 ∈ 𝐴) |
5 | | simp21l 1288 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑆 ∈ 𝐴) |
6 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | cdleme12.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
8 | | cdleme12.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 6, 7, 8 | hlatjcl 37308 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
10 | 3, 4, 5, 9 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
11 | | simp11r 1283 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑊 ∈ 𝐻) |
12 | | cdleme12.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
13 | 6, 12 | lhpbase 37939 |
. . . . . . . 8
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
14 | 11, 13 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑊 ∈ (Base‘𝐾)) |
15 | | cdleme12.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
16 | 15, 7, 8 | hlatlej1 37316 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑆)) |
17 | 3, 4, 5, 16 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑃 ≤ (𝑃 ∨ 𝑆)) |
18 | | cdleme12.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
19 | 6, 15, 7, 18, 8 | atmod3i1 37805 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 ≤ (𝑃 ∨ 𝑆)) → (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) = ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑊))) |
20 | 3, 4, 10, 14, 17, 19 | syl131anc 1381 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) = ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑊))) |
21 | 2, 20 | syl5eq 2791 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑃 ∨ 𝐶) = ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑊))) |
22 | 21 | oveq1d 7270 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑃 ∨ 𝐶) ∧ 𝑄) = (((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑊)) ∧ 𝑄)) |
23 | | hlol 37302 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
24 | 3, 23 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝐾 ∈ OL) |
25 | 3 | hllatd 37305 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝐾 ∈ Lat) |
26 | 6, 8 | atbase 37230 |
. . . . . . . 8
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
27 | 4, 26 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑃 ∈ (Base‘𝐾)) |
28 | 6, 7 | latjcl 18072 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑊) ∈ (Base‘𝐾)) |
29 | 25, 27, 14, 28 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑃 ∨ 𝑊) ∈ (Base‘𝐾)) |
30 | | simp13l 1286 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑄 ∈ 𝐴) |
31 | 6, 8 | atbase 37230 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
32 | 30, 31 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑄 ∈ (Base‘𝐾)) |
33 | 6, 18 | latmrot 37173 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧ ((𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑊) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑊)) ∧ 𝑄) = ((𝑄 ∧ (𝑃 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑊))) |
34 | 24, 10, 29, 32, 33 | syl13anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑊)) ∧ 𝑄) = ((𝑄 ∧ (𝑃 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑊))) |
35 | | simp31 1207 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
36 | | simp23l 1292 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑃 ≠ 𝑄) |
37 | 36 | necomd 2998 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑄 ≠ 𝑃) |
38 | 15, 7, 8 | hlatexch1 37336 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ 𝑆) → 𝑆 ≤ (𝑃 ∨ 𝑄))) |
39 | 3, 30, 5, 4, 37, 38 | syl131anc 1381 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑄 ≤ (𝑃 ∨ 𝑆) → 𝑆 ≤ (𝑃 ∨ 𝑄))) |
40 | 35, 39 | mtod 197 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑆)) |
41 | | hlatl 37301 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
42 | 3, 41 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝐾 ∈ AtLat) |
43 | | eqid 2738 |
. . . . . . . . 9
⊢
(0.‘𝐾) =
(0.‘𝐾) |
44 | 6, 15, 18, 43, 8 | atnle 37258 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → (¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ↔ (𝑄 ∧ (𝑃 ∨ 𝑆)) = (0.‘𝐾))) |
45 | 42, 30, 10, 44 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ↔ (𝑄 ∧ (𝑃 ∨ 𝑆)) = (0.‘𝐾))) |
46 | 40, 45 | mpbid 231 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑄 ∧ (𝑃 ∨ 𝑆)) = (0.‘𝐾)) |
47 | 46 | oveq1d 7270 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑄 ∧ (𝑃 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑊)) = ((0.‘𝐾) ∧ (𝑃 ∨ 𝑊))) |
48 | 6, 18, 43 | olm02 37178 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑊) ∈ (Base‘𝐾)) → ((0.‘𝐾) ∧ (𝑃 ∨ 𝑊)) = (0.‘𝐾)) |
49 | 24, 29, 48 | syl2anc 583 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((0.‘𝐾) ∧ (𝑃 ∨ 𝑊)) = (0.‘𝐾)) |
50 | 34, 47, 49 | 3eqtrrd 2783 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (0.‘𝐾) = (((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑊)) ∧ 𝑄)) |
51 | 22, 50 | eqtr4d 2781 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑃 ∨ 𝐶) ∧ 𝑄) = (0.‘𝐾)) |
52 | 51 | oveq1d 7270 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (((𝑃 ∨ 𝐶) ∧ 𝑄) ∨ 𝐶) = ((0.‘𝐾) ∨ 𝐶)) |
53 | 6, 7, 18, 8, 12, 1 | cdleme9b 38193 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝐶 ∈ (Base‘𝐾)) |
54 | 3, 4, 5, 11, 53 | syl13anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝐶 ∈ (Base‘𝐾)) |
55 | 6, 7 | latjcl 18072 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝐶) ∈ (Base‘𝐾)) |
56 | 25, 27, 54, 55 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑃 ∨ 𝐶) ∈ (Base‘𝐾)) |
57 | 6, 15, 7 | latlej2 18082 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾)) → 𝐶 ≤ (𝑃 ∨ 𝐶)) |
58 | 25, 27, 54, 57 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝐶 ≤ (𝑃 ∨ 𝐶)) |
59 | 6, 15, 7, 18, 8 | atmod2i2 37803 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ (𝑃 ∨ 𝐶) ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾)) ∧ 𝐶 ≤ (𝑃 ∨ 𝐶)) → (((𝑃 ∨ 𝐶) ∧ 𝑄) ∨ 𝐶) = ((𝑃 ∨ 𝐶) ∧ (𝑄 ∨ 𝐶))) |
60 | 3, 30, 56, 54, 58, 59 | syl131anc 1381 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (((𝑃 ∨ 𝐶) ∧ 𝑄) ∨ 𝐶) = ((𝑃 ∨ 𝐶) ∧ (𝑄 ∨ 𝐶))) |
61 | 6, 7, 43 | olj02 37167 |
. . 3
⊢ ((𝐾 ∈ OL ∧ 𝐶 ∈ (Base‘𝐾)) → ((0.‘𝐾) ∨ 𝐶) = 𝐶) |
62 | 24, 54, 61 | syl2anc 583 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((0.‘𝐾) ∨ 𝐶) = 𝐶) |
63 | 52, 60, 62 | 3eqtr3d 2786 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑃 ∨ 𝐶) ∧ (𝑄 ∨ 𝐶)) = 𝐶) |