Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oncard | Structured version Visualization version GIF version |
Description: A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
Ref | Expression |
---|---|
oncard | ⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥)) | |
2 | fveq2 6819 | . . . . 5 ⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥))) | |
3 | cardidm 9808 | . . . . 5 ⊢ (card‘(card‘𝑥)) = (card‘𝑥) | |
4 | 2, 3 | eqtrdi 2792 | . . . 4 ⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘𝑥)) |
5 | 1, 4 | eqtr4d 2779 | . . 3 ⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴)) |
6 | 5 | exlimiv 1932 | . 2 ⊢ (∃𝑥 𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴)) |
7 | fvex 6832 | . . . 4 ⊢ (card‘𝐴) ∈ V | |
8 | eleq1 2824 | . . . 4 ⊢ (𝐴 = (card‘𝐴) → (𝐴 ∈ V ↔ (card‘𝐴) ∈ V)) | |
9 | 7, 8 | mpbiri 257 | . . 3 ⊢ (𝐴 = (card‘𝐴) → 𝐴 ∈ V) |
10 | fveq2 6819 | . . . . 5 ⊢ (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴)) | |
11 | 10 | eqeq2d 2747 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))) |
12 | 11 | spcegv 3545 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥))) |
13 | 9, 12 | mpcom 38 | . 2 ⊢ (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥)) |
14 | 6, 13 | impbii 208 | 1 ⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∃wex 1780 ∈ wcel 2105 Vcvv 3441 ‘cfv 6473 cardccrd 9784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6299 df-on 6300 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-er 8561 df-en 8797 df-card 9788 |
This theorem is referenced by: iscard4 41450 |
Copyright terms: Public domain | W3C validator |