MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oncard Structured version   Visualization version   GIF version

Theorem oncard 9984
Description: A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
oncard (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem oncard
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥))
2 fveq2 6897 . . . . 5 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥)))
3 cardidm 9983 . . . . 5 (card‘(card‘𝑥)) = (card‘𝑥)
42, 3eqtrdi 2784 . . . 4 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘𝑥))
51, 4eqtr4d 2771 . . 3 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴))
65exlimiv 1926 . 2 (∃𝑥 𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴))
7 fvex 6910 . . . 4 (card‘𝐴) ∈ V
8 eleq1 2817 . . . 4 (𝐴 = (card‘𝐴) → (𝐴 ∈ V ↔ (card‘𝐴) ∈ V))
97, 8mpbiri 258 . . 3 (𝐴 = (card‘𝐴) → 𝐴 ∈ V)
10 fveq2 6897 . . . . 5 (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴))
1110eqeq2d 2739 . . . 4 (𝑥 = 𝐴 → (𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)))
1211spcegv 3584 . . 3 (𝐴 ∈ V → (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥)))
139, 12mpcom 38 . 2 (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥))
146, 13impbii 208 1 (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wex 1774  wcel 2099  Vcvv 3471  cfv 6548  cardccrd 9959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6372  df-on 6373  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-er 8725  df-en 8965  df-card 9963
This theorem is referenced by:  iscard4  42963
  Copyright terms: Public domain W3C validator