| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oncard | Structured version Visualization version GIF version | ||
| Description: A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| oncard | ⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥)) | |
| 2 | fveq2 6861 | . . . . 5 ⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥))) | |
| 3 | cardidm 9919 | . . . . 5 ⊢ (card‘(card‘𝑥)) = (card‘𝑥) | |
| 4 | 2, 3 | eqtrdi 2781 | . . . 4 ⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘𝑥)) |
| 5 | 1, 4 | eqtr4d 2768 | . . 3 ⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴)) |
| 6 | 5 | exlimiv 1930 | . 2 ⊢ (∃𝑥 𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴)) |
| 7 | fvex 6874 | . . . 4 ⊢ (card‘𝐴) ∈ V | |
| 8 | eleq1 2817 | . . . 4 ⊢ (𝐴 = (card‘𝐴) → (𝐴 ∈ V ↔ (card‘𝐴) ∈ V)) | |
| 9 | 7, 8 | mpbiri 258 | . . 3 ⊢ (𝐴 = (card‘𝐴) → 𝐴 ∈ V) |
| 10 | fveq2 6861 | . . . . 5 ⊢ (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴)) | |
| 11 | 10 | eqeq2d 2741 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))) |
| 12 | 11 | spcegv 3566 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥))) |
| 13 | 9, 12 | mpcom 38 | . 2 ⊢ (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥)) |
| 14 | 6, 13 | impbii 209 | 1 ⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 ‘cfv 6514 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-card 9899 |
| This theorem is referenced by: iscard4 43529 |
| Copyright terms: Public domain | W3C validator |