| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oncard | Structured version Visualization version GIF version | ||
| Description: A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| oncard | ⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥)) | |
| 2 | fveq2 6817 | . . . . 5 ⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥))) | |
| 3 | cardidm 9847 | . . . . 5 ⊢ (card‘(card‘𝑥)) = (card‘𝑥) | |
| 4 | 2, 3 | eqtrdi 2782 | . . . 4 ⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘𝑥)) |
| 5 | 1, 4 | eqtr4d 2769 | . . 3 ⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴)) |
| 6 | 5 | exlimiv 1931 | . 2 ⊢ (∃𝑥 𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴)) |
| 7 | fvex 6830 | . . . 4 ⊢ (card‘𝐴) ∈ V | |
| 8 | eleq1 2819 | . . . 4 ⊢ (𝐴 = (card‘𝐴) → (𝐴 ∈ V ↔ (card‘𝐴) ∈ V)) | |
| 9 | 7, 8 | mpbiri 258 | . . 3 ⊢ (𝐴 = (card‘𝐴) → 𝐴 ∈ V) |
| 10 | fveq2 6817 | . . . . 5 ⊢ (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴)) | |
| 11 | 10 | eqeq2d 2742 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))) |
| 12 | 11 | spcegv 3547 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥))) |
| 13 | 9, 12 | mpcom 38 | . 2 ⊢ (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥)) |
| 14 | 6, 13 | impbii 209 | 1 ⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ‘cfv 6476 cardccrd 9823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-card 9827 |
| This theorem is referenced by: iscard4 43566 |
| Copyright terms: Public domain | W3C validator |