| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oncard | Structured version Visualization version GIF version | ||
| Description: A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| oncard | ⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥)) | |
| 2 | fveq2 6840 | . . . . 5 ⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥))) | |
| 3 | cardidm 9888 | . . . . 5 ⊢ (card‘(card‘𝑥)) = (card‘𝑥) | |
| 4 | 2, 3 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘𝑥)) |
| 5 | 1, 4 | eqtr4d 2767 | . . 3 ⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴)) |
| 6 | 5 | exlimiv 1930 | . 2 ⊢ (∃𝑥 𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴)) |
| 7 | fvex 6853 | . . . 4 ⊢ (card‘𝐴) ∈ V | |
| 8 | eleq1 2816 | . . . 4 ⊢ (𝐴 = (card‘𝐴) → (𝐴 ∈ V ↔ (card‘𝐴) ∈ V)) | |
| 9 | 7, 8 | mpbiri 258 | . . 3 ⊢ (𝐴 = (card‘𝐴) → 𝐴 ∈ V) |
| 10 | fveq2 6840 | . . . . 5 ⊢ (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴)) | |
| 11 | 10 | eqeq2d 2740 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))) |
| 12 | 11 | spcegv 3560 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥))) |
| 13 | 9, 12 | mpcom 38 | . 2 ⊢ (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥)) |
| 14 | 6, 13 | impbii 209 | 1 ⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 ‘cfv 6499 cardccrd 9864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-card 9868 |
| This theorem is referenced by: iscard4 43495 |
| Copyright terms: Public domain | W3C validator |