MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oncard Structured version   Visualization version   GIF version

Theorem oncard 9576
Description: A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
oncard (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem oncard
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥))
2 fveq2 6717 . . . . 5 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥)))
3 cardidm 9575 . . . . 5 (card‘(card‘𝑥)) = (card‘𝑥)
42, 3eqtrdi 2794 . . . 4 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘𝑥))
51, 4eqtr4d 2780 . . 3 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴))
65exlimiv 1938 . 2 (∃𝑥 𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴))
7 fvex 6730 . . . 4 (card‘𝐴) ∈ V
8 eleq1 2825 . . . 4 (𝐴 = (card‘𝐴) → (𝐴 ∈ V ↔ (card‘𝐴) ∈ V))
97, 8mpbiri 261 . . 3 (𝐴 = (card‘𝐴) → 𝐴 ∈ V)
10 fveq2 6717 . . . . 5 (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴))
1110eqeq2d 2748 . . . 4 (𝑥 = 𝐴 → (𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)))
1211spcegv 3512 . . 3 (𝐴 ∈ V → (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥)))
139, 12mpcom 38 . 2 (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥))
146, 13impbii 212 1 (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wex 1787  wcel 2110  Vcvv 3408  cfv 6380  cardccrd 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-er 8391  df-en 8627  df-card 9555
This theorem is referenced by:  iscard4  40825
  Copyright terms: Public domain W3C validator