Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oncard | Structured version Visualization version GIF version |
Description: A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
Ref | Expression |
---|---|
oncard | ⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥)) | |
2 | fveq2 6717 | . . . . 5 ⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥))) | |
3 | cardidm 9575 | . . . . 5 ⊢ (card‘(card‘𝑥)) = (card‘𝑥) | |
4 | 2, 3 | eqtrdi 2794 | . . . 4 ⊢ (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘𝑥)) |
5 | 1, 4 | eqtr4d 2780 | . . 3 ⊢ (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴)) |
6 | 5 | exlimiv 1938 | . 2 ⊢ (∃𝑥 𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴)) |
7 | fvex 6730 | . . . 4 ⊢ (card‘𝐴) ∈ V | |
8 | eleq1 2825 | . . . 4 ⊢ (𝐴 = (card‘𝐴) → (𝐴 ∈ V ↔ (card‘𝐴) ∈ V)) | |
9 | 7, 8 | mpbiri 261 | . . 3 ⊢ (𝐴 = (card‘𝐴) → 𝐴 ∈ V) |
10 | fveq2 6717 | . . . . 5 ⊢ (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴)) | |
11 | 10 | eqeq2d 2748 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))) |
12 | 11 | spcegv 3512 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥))) |
13 | 9, 12 | mpcom 38 | . 2 ⊢ (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥)) |
14 | 6, 13 | impbii 212 | 1 ⊢ (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∃wex 1787 ∈ wcel 2110 Vcvv 3408 ‘cfv 6380 cardccrd 9551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-er 8391 df-en 8627 df-card 9555 |
This theorem is referenced by: iscard4 40825 |
Copyright terms: Public domain | W3C validator |