Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oncard Structured version   Visualization version   GIF version

Theorem oncard 9376
 Description: A set is a cardinal number iff it equals its own cardinal number. Proposition 10.9 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
oncard (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem oncard
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝑥))
2 fveq2 6646 . . . . 5 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘(card‘𝑥)))
3 cardidm 9375 . . . . 5 (card‘(card‘𝑥)) = (card‘𝑥)
42, 3eqtrdi 2849 . . . 4 (𝐴 = (card‘𝑥) → (card‘𝐴) = (card‘𝑥))
51, 4eqtr4d 2836 . . 3 (𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴))
65exlimiv 1931 . 2 (∃𝑥 𝐴 = (card‘𝑥) → 𝐴 = (card‘𝐴))
7 fvex 6659 . . . 4 (card‘𝐴) ∈ V
8 eleq1 2877 . . . 4 (𝐴 = (card‘𝐴) → (𝐴 ∈ V ↔ (card‘𝐴) ∈ V))
97, 8mpbiri 261 . . 3 (𝐴 = (card‘𝐴) → 𝐴 ∈ V)
10 fveq2 6646 . . . . 5 (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴))
1110eqeq2d 2809 . . . 4 (𝑥 = 𝐴 → (𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴)))
1211spcegv 3545 . . 3 (𝐴 ∈ V → (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥)))
139, 12mpcom 38 . 2 (𝐴 = (card‘𝐴) → ∃𝑥 𝐴 = (card‘𝑥))
146, 13impbii 212 1 (∃𝑥 𝐴 = (card‘𝑥) ↔ 𝐴 = (card‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   = wceq 1538  ∃wex 1781   ∈ wcel 2111  Vcvv 3441  ‘cfv 6325  cardccrd 9351 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-ord 6163  df-on 6164  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-er 8275  df-en 8496  df-card 9355 This theorem is referenced by:  iscard4  40284
 Copyright terms: Public domain W3C validator