![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ficardom | Structured version Visualization version GIF version |
Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 4-Feb-2013.) |
Ref | Expression |
---|---|
ficardom | ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8267 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
2 | 1 | biimpi 208 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
3 | finnum 9109 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
4 | cardid2 9114 | . . . . . . . 8 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴) |
6 | entr 8295 | . . . . . . 7 ⊢ (((card‘𝐴) ≈ 𝐴 ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) ≈ 𝑥) | |
7 | 5, 6 | sylan 575 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) ≈ 𝑥) |
8 | cardon 9105 | . . . . . . 7 ⊢ (card‘𝐴) ∈ On | |
9 | onomeneq 8440 | . . . . . . 7 ⊢ (((card‘𝐴) ∈ On ∧ 𝑥 ∈ ω) → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥)) | |
10 | 8, 9 | mpan 680 | . . . . . 6 ⊢ (𝑥 ∈ ω → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥)) |
11 | 7, 10 | syl5ib 236 | . . . . 5 ⊢ (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) = 𝑥)) |
12 | eleq1a 2854 | . . . . 5 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω)) | |
13 | 11, 12 | syld 47 | . . . 4 ⊢ (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) ∈ ω)) |
14 | 13 | expcomd 408 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ≈ 𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω))) |
15 | 14 | rexlimiv 3209 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)) |
16 | 2, 15 | mpcom 38 | 1 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 class class class wbr 4888 dom cdm 5357 Oncon0 5978 ‘cfv 6137 ωcom 7345 ≈ cen 8240 Fincfn 8243 cardccrd 9096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-om 7346 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 |
This theorem is referenced by: cardnn 9124 isinffi 9153 finnisoeu 9271 iunfictbso 9272 ficardun 9361 ficardun2 9362 pwsdompw 9363 ackbij1lem5 9383 ackbij1lem9 9387 ackbij1lem10 9388 ackbij1lem14 9392 ackbij1b 9398 ackbij2lem2 9399 ackbij2 9402 fin23lem22 9486 fin1a2lem11 9569 domtriomlem 9601 pwfseqlem4a 9820 pwfseqlem4 9821 hashkf 13443 hashginv 13445 hashcard 13467 hashcl 13468 hashdom 13489 hashun 13492 ishashinf 13567 ackbijnn 14973 mreexexd 16705 |
Copyright terms: Public domain | W3C validator |