![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ficardom | Structured version Visualization version GIF version |
Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 4-Feb-2013.) |
Ref | Expression |
---|---|
ficardom | β’ (π΄ β Fin β (cardβπ΄) β Ο) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8974 | . . 3 β’ (π΄ β Fin β βπ₯ β Ο π΄ β π₯) | |
2 | 1 | biimpi 215 | . 2 β’ (π΄ β Fin β βπ₯ β Ο π΄ β π₯) |
3 | finnum 9945 | . . . . . . . 8 β’ (π΄ β Fin β π΄ β dom card) | |
4 | cardid2 9950 | . . . . . . . 8 β’ (π΄ β dom card β (cardβπ΄) β π΄) | |
5 | 3, 4 | syl 17 | . . . . . . 7 β’ (π΄ β Fin β (cardβπ΄) β π΄) |
6 | entr 9004 | . . . . . . 7 β’ (((cardβπ΄) β π΄ β§ π΄ β π₯) β (cardβπ΄) β π₯) | |
7 | 5, 6 | sylan 578 | . . . . . 6 β’ ((π΄ β Fin β§ π΄ β π₯) β (cardβπ΄) β π₯) |
8 | cardon 9941 | . . . . . . 7 β’ (cardβπ΄) β On | |
9 | onomeneq 9230 | . . . . . . 7 β’ (((cardβπ΄) β On β§ π₯ β Ο) β ((cardβπ΄) β π₯ β (cardβπ΄) = π₯)) | |
10 | 8, 9 | mpan 686 | . . . . . 6 β’ (π₯ β Ο β ((cardβπ΄) β π₯ β (cardβπ΄) = π₯)) |
11 | 7, 10 | imbitrid 243 | . . . . 5 β’ (π₯ β Ο β ((π΄ β Fin β§ π΄ β π₯) β (cardβπ΄) = π₯)) |
12 | eleq1a 2826 | . . . . 5 β’ (π₯ β Ο β ((cardβπ΄) = π₯ β (cardβπ΄) β Ο)) | |
13 | 11, 12 | syld 47 | . . . 4 β’ (π₯ β Ο β ((π΄ β Fin β§ π΄ β π₯) β (cardβπ΄) β Ο)) |
14 | 13 | expcomd 415 | . . 3 β’ (π₯ β Ο β (π΄ β π₯ β (π΄ β Fin β (cardβπ΄) β Ο))) |
15 | 14 | rexlimiv 3146 | . 2 β’ (βπ₯ β Ο π΄ β π₯ β (π΄ β Fin β (cardβπ΄) β Ο)) |
16 | 2, 15 | mpcom 38 | 1 β’ (π΄ β Fin β (cardβπ΄) β Ο) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwrex 3068 class class class wbr 5147 dom cdm 5675 Oncon0 6363 βcfv 6542 Οcom 7857 β cen 8938 Fincfn 8941 cardccrd 9932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7858 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 |
This theorem is referenced by: cardnn 9960 isinffi 9989 finnisoeu 10110 iunfictbso 10111 ficardadju 10196 ficardun 10197 ficardunOLD 10198 ficardun2 10199 ficardun2OLD 10200 pwsdompw 10201 ackbij1lem5 10221 ackbij1lem9 10225 ackbij1lem10 10226 ackbij1lem14 10230 ackbij1b 10236 ackbij2lem2 10237 ackbij2 10240 fin23lem22 10324 fin1a2lem11 10407 domtriomlem 10439 pwfseqlem4a 10658 pwfseqlem4 10659 hashkf 14296 hashginv 14298 hashcard 14319 hashcl 14320 hashdom 14343 hashun 14346 ishashinf 14428 ackbijnn 15778 mreexexd 17596 |
Copyright terms: Public domain | W3C validator |