![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ficardom | Structured version Visualization version GIF version |
Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 4-Feb-2013.) |
Ref | Expression |
---|---|
ficardom | β’ (π΄ β Fin β (cardβπ΄) β Ο) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 9005 | . . 3 β’ (π΄ β Fin β βπ₯ β Ο π΄ β π₯) | |
2 | 1 | biimpi 215 | . 2 β’ (π΄ β Fin β βπ₯ β Ο π΄ β π₯) |
3 | finnum 9981 | . . . . . . . 8 β’ (π΄ β Fin β π΄ β dom card) | |
4 | cardid2 9986 | . . . . . . . 8 β’ (π΄ β dom card β (cardβπ΄) β π΄) | |
5 | 3, 4 | syl 17 | . . . . . . 7 β’ (π΄ β Fin β (cardβπ΄) β π΄) |
6 | entr 9035 | . . . . . . 7 β’ (((cardβπ΄) β π΄ β§ π΄ β π₯) β (cardβπ΄) β π₯) | |
7 | 5, 6 | sylan 578 | . . . . . 6 β’ ((π΄ β Fin β§ π΄ β π₯) β (cardβπ΄) β π₯) |
8 | cardon 9977 | . . . . . . 7 β’ (cardβπ΄) β On | |
9 | onomeneq 9261 | . . . . . . 7 β’ (((cardβπ΄) β On β§ π₯ β Ο) β ((cardβπ΄) β π₯ β (cardβπ΄) = π₯)) | |
10 | 8, 9 | mpan 688 | . . . . . 6 β’ (π₯ β Ο β ((cardβπ΄) β π₯ β (cardβπ΄) = π₯)) |
11 | 7, 10 | imbitrid 243 | . . . . 5 β’ (π₯ β Ο β ((π΄ β Fin β§ π΄ β π₯) β (cardβπ΄) = π₯)) |
12 | eleq1a 2824 | . . . . 5 β’ (π₯ β Ο β ((cardβπ΄) = π₯ β (cardβπ΄) β Ο)) | |
13 | 11, 12 | syld 47 | . . . 4 β’ (π₯ β Ο β ((π΄ β Fin β§ π΄ β π₯) β (cardβπ΄) β Ο)) |
14 | 13 | expcomd 415 | . . 3 β’ (π₯ β Ο β (π΄ β π₯ β (π΄ β Fin β (cardβπ΄) β Ο))) |
15 | 14 | rexlimiv 3145 | . 2 β’ (βπ₯ β Ο π΄ β π₯ β (π΄ β Fin β (cardβπ΄) β Ο)) |
16 | 2, 15 | mpcom 38 | 1 β’ (π΄ β Fin β (cardβπ΄) β Ο) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwrex 3067 class class class wbr 5152 dom cdm 5682 Oncon0 6374 βcfv 6553 Οcom 7878 β cen 8969 Fincfn 8972 cardccrd 9968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-om 7879 df-1o 8495 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-card 9972 |
This theorem is referenced by: cardnn 9996 isinffi 10025 finnisoeu 10146 iunfictbso 10147 ficardadju 10232 ficardun 10233 ficardunOLD 10234 ficardun2 10235 ficardun2OLD 10236 pwsdompw 10237 ackbij1lem5 10257 ackbij1lem9 10261 ackbij1lem10 10262 ackbij1lem14 10266 ackbij1b 10272 ackbij2lem2 10273 ackbij2 10276 fin23lem22 10360 fin1a2lem11 10443 domtriomlem 10475 pwfseqlem4a 10694 pwfseqlem4 10695 hashkf 14333 hashginv 14335 hashcard 14356 hashcl 14357 hashdom 14380 hashun 14383 ishashinf 14466 ackbijnn 15816 mreexexd 17637 |
Copyright terms: Public domain | W3C validator |