| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ficardom | Structured version Visualization version GIF version | ||
| Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 4-Feb-2013.) |
| Ref | Expression |
|---|---|
| ficardom | ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8898 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 3 | finnum 9841 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
| 4 | cardid2 9846 | . . . . . . . 8 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴) |
| 6 | entr 8928 | . . . . . . 7 ⊢ (((card‘𝐴) ≈ 𝐴 ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) ≈ 𝑥) | |
| 7 | 5, 6 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) ≈ 𝑥) |
| 8 | cardon 9837 | . . . . . . 7 ⊢ (card‘𝐴) ∈ On | |
| 9 | onomeneq 9123 | . . . . . . 7 ⊢ (((card‘𝐴) ∈ On ∧ 𝑥 ∈ ω) → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥)) | |
| 10 | 8, 9 | mpan 690 | . . . . . 6 ⊢ (𝑥 ∈ ω → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥)) |
| 11 | 7, 10 | imbitrid 244 | . . . . 5 ⊢ (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) = 𝑥)) |
| 12 | eleq1a 2826 | . . . . 5 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω)) | |
| 13 | 11, 12 | syld 47 | . . . 4 ⊢ (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) ∈ ω)) |
| 14 | 13 | expcomd 416 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ≈ 𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω))) |
| 15 | 14 | rexlimiv 3126 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)) |
| 16 | 2, 15 | mpcom 38 | 1 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5089 dom cdm 5614 Oncon0 6306 ‘cfv 6481 ωcom 7796 ≈ cen 8866 Fincfn 8869 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 |
| This theorem is referenced by: cardnn 9856 isinffi 9885 finnisoeu 10004 iunfictbso 10005 ficardadju 10091 ficardun 10092 ficardun2 10093 pwsdompw 10094 ackbij1lem5 10114 ackbij1lem9 10118 ackbij1lem10 10119 ackbij1lem14 10123 ackbij1b 10129 ackbij2lem2 10130 ackbij2 10133 fin23lem22 10218 fin1a2lem11 10301 domtriomlem 10333 pwfseqlem4a 10552 pwfseqlem4 10553 hashkf 14239 hashginv 14241 hashcard 14262 hashcl 14263 hashdom 14286 hashun 14289 ishashinf 14370 ackbijnn 15735 mreexexd 17554 |
| Copyright terms: Public domain | W3C validator |