| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ficardom | Structured version Visualization version GIF version | ||
| Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 4-Feb-2013.) |
| Ref | Expression |
|---|---|
| ficardom | ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8988 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 3 | finnum 9960 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
| 4 | cardid2 9965 | . . . . . . . 8 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴) |
| 6 | entr 9018 | . . . . . . 7 ⊢ (((card‘𝐴) ≈ 𝐴 ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) ≈ 𝑥) | |
| 7 | 5, 6 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) ≈ 𝑥) |
| 8 | cardon 9956 | . . . . . . 7 ⊢ (card‘𝐴) ∈ On | |
| 9 | onomeneq 9235 | . . . . . . 7 ⊢ (((card‘𝐴) ∈ On ∧ 𝑥 ∈ ω) → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥)) | |
| 10 | 8, 9 | mpan 690 | . . . . . 6 ⊢ (𝑥 ∈ ω → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥)) |
| 11 | 7, 10 | imbitrid 244 | . . . . 5 ⊢ (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) = 𝑥)) |
| 12 | eleq1a 2829 | . . . . 5 ⊢ (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω)) | |
| 13 | 11, 12 | syld 47 | . . . 4 ⊢ (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝑥) → (card‘𝐴) ∈ ω)) |
| 14 | 13 | expcomd 416 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ≈ 𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω))) |
| 15 | 14 | rexlimiv 3134 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)) |
| 16 | 2, 15 | mpcom 38 | 1 ⊢ (𝐴 ∈ Fin → (card‘𝐴) ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 dom cdm 5654 Oncon0 6352 ‘cfv 6530 ωcom 7859 ≈ cen 8954 Fincfn 8957 cardccrd 9947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-om 7860 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9951 |
| This theorem is referenced by: cardnn 9975 isinffi 10004 finnisoeu 10125 iunfictbso 10126 ficardadju 10212 ficardun 10213 ficardun2 10214 pwsdompw 10215 ackbij1lem5 10235 ackbij1lem9 10239 ackbij1lem10 10240 ackbij1lem14 10244 ackbij1b 10250 ackbij2lem2 10251 ackbij2 10254 fin23lem22 10339 fin1a2lem11 10422 domtriomlem 10454 pwfseqlem4a 10673 pwfseqlem4 10674 hashkf 14348 hashginv 14350 hashcard 14371 hashcl 14372 hashdom 14395 hashun 14398 ishashinf 14479 ackbijnn 15842 mreexexd 17658 |
| Copyright terms: Public domain | W3C validator |