MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardom Structured version   Visualization version   GIF version

Theorem ficardom 10001
Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 4-Feb-2013.)
Assertion
Ref Expression
ficardom (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)

Proof of Theorem ficardom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 9016 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
21biimpi 216 . 2 (𝐴 ∈ Fin → ∃𝑥 ∈ ω 𝐴𝑥)
3 finnum 9988 . . . . . . . 8 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
4 cardid2 9993 . . . . . . . 8 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
53, 4syl 17 . . . . . . 7 (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)
6 entr 9046 . . . . . . 7 (((card‘𝐴) ≈ 𝐴𝐴𝑥) → (card‘𝐴) ≈ 𝑥)
75, 6sylan 580 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) ≈ 𝑥)
8 cardon 9984 . . . . . . 7 (card‘𝐴) ∈ On
9 onomeneq 9265 . . . . . . 7 (((card‘𝐴) ∈ On ∧ 𝑥 ∈ ω) → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥))
108, 9mpan 690 . . . . . 6 (𝑥 ∈ ω → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥))
117, 10imbitrid 244 . . . . 5 (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) = 𝑥))
12 eleq1a 2836 . . . . 5 (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω))
1311, 12syld 47 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) ∈ ω))
1413expcomd 416 . . 3 (𝑥 ∈ ω → (𝐴𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)))
1514rexlimiv 3148 . 2 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω))
162, 15mpcom 38 1 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070   class class class wbr 5143  dom cdm 5685  Oncon0 6384  cfv 6561  ωcom 7887  cen 8982  Fincfn 8985  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979
This theorem is referenced by:  cardnn  10003  isinffi  10032  finnisoeu  10153  iunfictbso  10154  ficardadju  10240  ficardun  10241  ficardun2  10242  pwsdompw  10243  ackbij1lem5  10263  ackbij1lem9  10267  ackbij1lem10  10268  ackbij1lem14  10272  ackbij1b  10278  ackbij2lem2  10279  ackbij2  10282  fin23lem22  10367  fin1a2lem11  10450  domtriomlem  10482  pwfseqlem4a  10701  pwfseqlem4  10702  hashkf  14371  hashginv  14373  hashcard  14394  hashcl  14395  hashdom  14418  hashun  14421  ishashinf  14502  ackbijnn  15864  mreexexd  17691
  Copyright terms: Public domain W3C validator