MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardom Structured version   Visualization version   GIF version

Theorem ficardom 10030
Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 4-Feb-2013.)
Assertion
Ref Expression
ficardom (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)

Proof of Theorem ficardom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 9036 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
21biimpi 216 . 2 (𝐴 ∈ Fin → ∃𝑥 ∈ ω 𝐴𝑥)
3 finnum 10017 . . . . . . . 8 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
4 cardid2 10022 . . . . . . . 8 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
53, 4syl 17 . . . . . . 7 (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)
6 entr 9066 . . . . . . 7 (((card‘𝐴) ≈ 𝐴𝐴𝑥) → (card‘𝐴) ≈ 𝑥)
75, 6sylan 579 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) ≈ 𝑥)
8 cardon 10013 . . . . . . 7 (card‘𝐴) ∈ On
9 onomeneq 9291 . . . . . . 7 (((card‘𝐴) ∈ On ∧ 𝑥 ∈ ω) → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥))
108, 9mpan 689 . . . . . 6 (𝑥 ∈ ω → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥))
117, 10imbitrid 244 . . . . 5 (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) = 𝑥))
12 eleq1a 2839 . . . . 5 (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω))
1311, 12syld 47 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) ∈ ω))
1413expcomd 416 . . 3 (𝑥 ∈ ω → (𝐴𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)))
1514rexlimiv 3154 . 2 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω))
162, 15mpcom 38 1 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  dom cdm 5700  Oncon0 6395  cfv 6573  ωcom 7903  cen 9000  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008
This theorem is referenced by:  cardnn  10032  isinffi  10061  finnisoeu  10182  iunfictbso  10183  ficardadju  10269  ficardun  10270  ficardun2  10271  pwsdompw  10272  ackbij1lem5  10292  ackbij1lem9  10296  ackbij1lem10  10297  ackbij1lem14  10301  ackbij1b  10307  ackbij2lem2  10308  ackbij2  10311  fin23lem22  10396  fin1a2lem11  10479  domtriomlem  10511  pwfseqlem4a  10730  pwfseqlem4  10731  hashkf  14381  hashginv  14383  hashcard  14404  hashcl  14405  hashdom  14428  hashun  14431  ishashinf  14512  ackbijnn  15876  mreexexd  17706
  Copyright terms: Public domain W3C validator