Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atle Structured version   Visualization version   GIF version

Theorem atle 39418
Description: Any nonzero element has an atom under it. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
atle.b 𝐵 = (Base‘𝐾)
atle.l = (le‘𝐾)
atle.z 0 = (0.‘𝐾)
atle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atle ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 𝑝 𝑋)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   0 ,𝑝

Proof of Theorem atle
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝐾 ∈ HL)
2 hlop 39343 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
323ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝐾 ∈ OP)
4 atle.b . . . . 5 𝐵 = (Base‘𝐾)
5 atle.z . . . . 5 0 = (0.‘𝐾)
64, 5op0cl 39165 . . . 4 (𝐾 ∈ OP → 0𝐵)
73, 6syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 0𝐵)
8 simp2 1137 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐵)
9 simp3 1138 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝑋0 )
10 eqid 2729 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
114, 10, 5opltn0 39171 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 0 (lt‘𝐾)𝑋𝑋0 ))
123, 8, 11syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ( 0 (lt‘𝐾)𝑋𝑋0 ))
139, 12mpbird 257 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 0 (lt‘𝐾)𝑋)
14 atle.l . . . 4 = (le‘𝐾)
15 eqid 2729 . . . 4 (join‘𝐾) = (join‘𝐾)
16 atle.a . . . 4 𝐴 = (Atoms‘𝐾)
174, 14, 10, 15, 16hlrelat 39384 . . 3 (((𝐾 ∈ HL ∧ 0𝐵𝑋𝐵) ∧ 0 (lt‘𝐾)𝑋) → ∃𝑝𝐴 ( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋))
181, 7, 8, 13, 17syl31anc 1375 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 ( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋))
19 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
20 hlol 39342 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
2119, 20syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → 𝐾 ∈ OL)
224, 16atbase 39270 . . . . . . . 8 (𝑝𝐴𝑝𝐵)
2322adantl 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → 𝑝𝐵)
244, 15, 5olj02 39207 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑝𝐵) → ( 0 (join‘𝐾)𝑝) = 𝑝)
2521, 23, 24syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → ( 0 (join‘𝐾)𝑝) = 𝑝)
2625breq1d 5105 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → (( 0 (join‘𝐾)𝑝) 𝑋𝑝 𝑋))
2726biimpd 229 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → (( 0 (join‘𝐾)𝑝) 𝑋𝑝 𝑋))
2827adantld 490 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → (( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋) → 𝑝 𝑋))
2928reximdva 3142 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → (∃𝑝𝐴 ( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋) → ∃𝑝𝐴 𝑝 𝑋))
3018, 29mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 𝑝 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  ltcplt 18232  joincjn 18235  0.cp0 18345  OPcops 39153  OLcol 39155  Atomscatm 39244  HLchlt 39331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332
This theorem is referenced by:  1cvratex  39455  llnle  39500  lhpexle  39987
  Copyright terms: Public domain W3C validator