Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atle Structured version   Visualization version   GIF version

Theorem atle 39437
Description: Any nonzero element has an atom under it. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
atle.b 𝐵 = (Base‘𝐾)
atle.l = (le‘𝐾)
atle.z 0 = (0.‘𝐾)
atle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atle ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 𝑝 𝑋)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   0 ,𝑝

Proof of Theorem atle
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝐾 ∈ HL)
2 hlop 39362 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
323ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝐾 ∈ OP)
4 atle.b . . . . 5 𝐵 = (Base‘𝐾)
5 atle.z . . . . 5 0 = (0.‘𝐾)
64, 5op0cl 39184 . . . 4 (𝐾 ∈ OP → 0𝐵)
73, 6syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 0𝐵)
8 simp2 1137 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐵)
9 simp3 1138 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝑋0 )
10 eqid 2730 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
114, 10, 5opltn0 39190 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 0 (lt‘𝐾)𝑋𝑋0 ))
123, 8, 11syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ( 0 (lt‘𝐾)𝑋𝑋0 ))
139, 12mpbird 257 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 0 (lt‘𝐾)𝑋)
14 atle.l . . . 4 = (le‘𝐾)
15 eqid 2730 . . . 4 (join‘𝐾) = (join‘𝐾)
16 atle.a . . . 4 𝐴 = (Atoms‘𝐾)
174, 14, 10, 15, 16hlrelat 39403 . . 3 (((𝐾 ∈ HL ∧ 0𝐵𝑋𝐵) ∧ 0 (lt‘𝐾)𝑋) → ∃𝑝𝐴 ( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋))
181, 7, 8, 13, 17syl31anc 1375 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 ( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋))
19 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
20 hlol 39361 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
2119, 20syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → 𝐾 ∈ OL)
224, 16atbase 39289 . . . . . . . 8 (𝑝𝐴𝑝𝐵)
2322adantl 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → 𝑝𝐵)
244, 15, 5olj02 39226 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑝𝐵) → ( 0 (join‘𝐾)𝑝) = 𝑝)
2521, 23, 24syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → ( 0 (join‘𝐾)𝑝) = 𝑝)
2625breq1d 5120 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → (( 0 (join‘𝐾)𝑝) 𝑋𝑝 𝑋))
2726biimpd 229 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → (( 0 (join‘𝐾)𝑝) 𝑋𝑝 𝑋))
2827adantld 490 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → (( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋) → 𝑝 𝑋))
2928reximdva 3147 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → (∃𝑝𝐴 ( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋) → ∃𝑝𝐴 𝑝 𝑋))
3018, 29mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 𝑝 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  ltcplt 18276  joincjn 18279  0.cp0 18389  OPcops 39172  OLcol 39174  Atomscatm 39263  HLchlt 39350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351
This theorem is referenced by:  1cvratex  39474  llnle  39519  lhpexle  40006
  Copyright terms: Public domain W3C validator