Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padd4N Structured version   Visualization version   GIF version

Theorem padd4N 39839
Description: Rearrangement of 4 terms in a projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddass.a 𝐴 = (Atoms‘𝐾)
paddass.p + = (+𝑃𝐾)
Assertion
Ref Expression
padd4N ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))

Proof of Theorem padd4N
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → 𝐾 ∈ HL)
2 simp2r 1201 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → 𝑌𝐴)
3 simp3l 1202 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → 𝑍𝐴)
4 simp3r 1203 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → 𝑊𝐴)
5 paddass.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 paddass.p . . . . 5 + = (+𝑃𝐾)
75, 6padd12N 39838 . . . 4 ((𝐾 ∈ HL ∧ (𝑌𝐴𝑍𝐴𝑊𝐴)) → (𝑌 + (𝑍 + 𝑊)) = (𝑍 + (𝑌 + 𝑊)))
81, 2, 3, 4, 7syl13anc 1374 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → (𝑌 + (𝑍 + 𝑊)) = (𝑍 + (𝑌 + 𝑊)))
98oveq2d 7365 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → (𝑋 + (𝑌 + (𝑍 + 𝑊))) = (𝑋 + (𝑍 + (𝑌 + 𝑊))))
10 simp2l 1200 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → 𝑋𝐴)
115, 6paddssat 39813 . . . 4 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑊𝐴) → (𝑍 + 𝑊) ⊆ 𝐴)
121, 3, 4, 11syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → (𝑍 + 𝑊) ⊆ 𝐴)
135, 6paddass 39837 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴 ∧ (𝑍 + 𝑊) ⊆ 𝐴)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = (𝑋 + (𝑌 + (𝑍 + 𝑊))))
141, 10, 2, 12, 13syl13anc 1374 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = (𝑋 + (𝑌 + (𝑍 + 𝑊))))
155, 6paddssat 39813 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑊𝐴) → (𝑌 + 𝑊) ⊆ 𝐴)
161, 2, 4, 15syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → (𝑌 + 𝑊) ⊆ 𝐴)
175, 6paddass 39837 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑍𝐴 ∧ (𝑌 + 𝑊) ⊆ 𝐴)) → ((𝑋 + 𝑍) + (𝑌 + 𝑊)) = (𝑋 + (𝑍 + (𝑌 + 𝑊))))
181, 10, 3, 16, 17syl13anc 1374 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → ((𝑋 + 𝑍) + (𝑌 + 𝑊)) = (𝑋 + (𝑍 + (𝑌 + 𝑊))))
199, 14, 183eqtr4d 2774 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴) ∧ (𝑍𝐴𝑊𝐴)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  cfv 6482  (class class class)co 7349  Atomscatm 39262  HLchlt 39349  +𝑃cpadd 39794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39175  df-ol 39177  df-oml 39178  df-covers 39265  df-ats 39266  df-atl 39297  df-cvlat 39321  df-hlat 39350  df-padd 39795
This theorem is referenced by:  paddclN  39841
  Copyright terms: Public domain W3C validator