Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > padd4N | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
paddass.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddass.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
padd4N | ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → 𝐾 ∈ HL) | |
2 | simp2r 1198 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → 𝑌 ⊆ 𝐴) | |
3 | simp3l 1199 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → 𝑍 ⊆ 𝐴) | |
4 | simp3r 1200 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → 𝑊 ⊆ 𝐴) | |
5 | paddass.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | paddass.p | . . . . 5 ⊢ + = (+𝑃‘𝐾) | |
7 | 5, 6 | padd12N 37832 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → (𝑌 + (𝑍 + 𝑊)) = (𝑍 + (𝑌 + 𝑊))) |
8 | 1, 2, 3, 4, 7 | syl13anc 1370 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → (𝑌 + (𝑍 + 𝑊)) = (𝑍 + (𝑌 + 𝑊))) |
9 | 8 | oveq2d 7284 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → (𝑋 + (𝑌 + (𝑍 + 𝑊))) = (𝑋 + (𝑍 + (𝑌 + 𝑊)))) |
10 | simp2l 1197 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → 𝑋 ⊆ 𝐴) | |
11 | 5, 6 | paddssat 37807 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → (𝑍 + 𝑊) ⊆ 𝐴) |
12 | 1, 3, 4, 11 | syl3anc 1369 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → (𝑍 + 𝑊) ⊆ 𝐴) |
13 | 5, 6 | paddass 37831 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ (𝑍 + 𝑊) ⊆ 𝐴)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = (𝑋 + (𝑌 + (𝑍 + 𝑊)))) |
14 | 1, 10, 2, 12, 13 | syl13anc 1370 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = (𝑋 + (𝑌 + (𝑍 + 𝑊)))) |
15 | 5, 6 | paddssat 37807 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴) → (𝑌 + 𝑊) ⊆ 𝐴) |
16 | 1, 2, 4, 15 | syl3anc 1369 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → (𝑌 + 𝑊) ⊆ 𝐴) |
17 | 5, 6 | paddass 37831 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ∧ (𝑌 + 𝑊) ⊆ 𝐴)) → ((𝑋 + 𝑍) + (𝑌 + 𝑊)) = (𝑋 + (𝑍 + (𝑌 + 𝑊)))) |
18 | 1, 10, 3, 16, 17 | syl13anc 1370 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → ((𝑋 + 𝑍) + (𝑌 + 𝑊)) = (𝑋 + (𝑍 + (𝑌 + 𝑊)))) |
19 | 9, 14, 18 | 3eqtr4d 2789 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 ‘cfv 6430 (class class class)co 7268 Atomscatm 37256 HLchlt 37343 +𝑃cpadd 37788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-proset 17994 df-poset 18012 df-plt 18029 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-p0 18124 df-lat 18131 df-clat 18198 df-oposet 37169 df-ol 37171 df-oml 37172 df-covers 37259 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 df-padd 37789 |
This theorem is referenced by: paddclN 37835 |
Copyright terms: Public domain | W3C validator |