| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phtpyhtpy | Structured version Visualization version GIF version | ||
| Description: A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| Ref | Expression |
|---|---|
| phtpyhtpy | ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isphtpy.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 2 | isphtpy.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 3 | 1, 2 | isphtpy 24900 | . . 3 ⊢ (𝜑 → (ℎ ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))))) |
| 4 | simpl 482 | . . 3 ⊢ ((ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))) → ℎ ∈ (𝐹(II Htpy 𝐽)𝐺)) | |
| 5 | 3, 4 | biimtrdi 253 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝐹(PHtpy‘𝐽)𝐺) → ℎ ∈ (𝐹(II Htpy 𝐽)𝐺))) |
| 6 | 5 | ssrdv 3938 | 1 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ⊆ wss 3900 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 [,]cicc 13240 Cn ccn 23132 IIcii 24788 Htpy chtpy 24886 PHtpycphtpy 24887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-top 22802 df-topon 22819 df-cn 23135 df-phtpy 24890 |
| This theorem is referenced by: phtpycn 24902 phtpy01 24904 phtpycom 24907 phtpyco2 24909 phtpycc 24910 pcohtpylem 24939 txsconnlem 35252 cvmliftphtlem 35329 |
| Copyright terms: Public domain | W3C validator |