Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phtpyhtpy | Structured version Visualization version GIF version |
Description: A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
phtpyhtpy | ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isphtpy.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | isphtpy.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
3 | 1, 2 | isphtpy 24227 | . . 3 ⊢ (𝜑 → (ℎ ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))))) |
4 | simpl 483 | . . 3 ⊢ ((ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))) → ℎ ∈ (𝐹(II Htpy 𝐽)𝐺)) | |
5 | 3, 4 | syl6bi 252 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝐹(PHtpy‘𝐽)𝐺) → ℎ ∈ (𝐹(II Htpy 𝐽)𝐺))) |
6 | 5 | ssrdv 3937 | 1 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ⊆ wss 3897 ‘cfv 6466 (class class class)co 7317 0cc0 10951 1c1 10952 [,]cicc 13162 Cn ccn 22458 IIcii 24121 Htpy chtpy 24213 PHtpycphtpy 24214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-ov 7320 df-oprab 7321 df-mpo 7322 df-1st 7878 df-2nd 7879 df-map 8667 df-top 22126 df-topon 22143 df-cn 22461 df-phtpy 24217 |
This theorem is referenced by: phtpycn 24229 phtpy01 24231 phtpycom 24234 phtpyco2 24236 phtpycc 24237 pcohtpylem 24265 txsconnlem 33341 cvmliftphtlem 33418 |
Copyright terms: Public domain | W3C validator |