Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phtpyhtpy | Structured version Visualization version GIF version |
Description: A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
phtpyhtpy | ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isphtpy.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | isphtpy.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
3 | 1, 2 | isphtpy 24050 | . . 3 ⊢ (𝜑 → (ℎ ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))))) |
4 | simpl 482 | . . 3 ⊢ ((ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))) → ℎ ∈ (𝐹(II Htpy 𝐽)𝐺)) | |
5 | 3, 4 | syl6bi 252 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝐹(PHtpy‘𝐽)𝐺) → ℎ ∈ (𝐹(II Htpy 𝐽)𝐺))) |
6 | 5 | ssrdv 3923 | 1 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 [,]cicc 13011 Cn ccn 22283 IIcii 23944 Htpy chtpy 24036 PHtpycphtpy 24037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 df-phtpy 24040 |
This theorem is referenced by: phtpycn 24052 phtpy01 24054 phtpycom 24057 phtpyco2 24059 phtpycc 24060 pcohtpylem 24088 txsconnlem 33102 cvmliftphtlem 33179 |
Copyright terms: Public domain | W3C validator |