MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyhtpy Structured version   Visualization version   GIF version

Theorem phtpyhtpy 24228
Description: A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
phtpyhtpy (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))

Proof of Theorem phtpyhtpy
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isphtpy.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
2 isphtpy.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2isphtpy 24227 . . 3 (𝜑 → ( ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ ( ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1)))))
4 simpl 483 . . 3 (( ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))) → ∈ (𝐹(II Htpy 𝐽)𝐺))
53, 4syl6bi 252 . 2 (𝜑 → ( ∈ (𝐹(PHtpy‘𝐽)𝐺) → ∈ (𝐹(II Htpy 𝐽)𝐺)))
65ssrdv 3937 1 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3062  wss 3897  cfv 6466  (class class class)co 7317  0cc0 10951  1c1 10952  [,]cicc 13162   Cn ccn 22458  IIcii 24121   Htpy chtpy 24213  PHtpycphtpy 24214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-ov 7320  df-oprab 7321  df-mpo 7322  df-1st 7878  df-2nd 7879  df-map 8667  df-top 22126  df-topon 22143  df-cn 22461  df-phtpy 24217
This theorem is referenced by:  phtpycn  24229  phtpy01  24231  phtpycom  24234  phtpyco2  24236  phtpycc  24237  pcohtpylem  24265  txsconnlem  33341  cvmliftphtlem  33418
  Copyright terms: Public domain W3C validator