| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phtpyhtpy | Structured version Visualization version GIF version | ||
| Description: A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| Ref | Expression |
|---|---|
| phtpyhtpy | ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isphtpy.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 2 | isphtpy.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 3 | 1, 2 | isphtpy 24917 | . . 3 ⊢ (𝜑 → (ℎ ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))))) |
| 4 | simpl 482 | . . 3 ⊢ ((ℎ ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝐹‘0) ∧ (1ℎ𝑠) = (𝐹‘1))) → ℎ ∈ (𝐹(II Htpy 𝐽)𝐺)) | |
| 5 | 3, 4 | biimtrdi 253 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝐹(PHtpy‘𝐽)𝐺) → ℎ ∈ (𝐹(II Htpy 𝐽)𝐺))) |
| 6 | 5 | ssrdv 3937 | 1 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ⊆ wss 3899 ‘cfv 6489 (class class class)co 7355 0cc0 11016 1c1 11017 [,]cicc 13258 Cn ccn 23149 IIcii 24805 Htpy chtpy 24903 PHtpycphtpy 24904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 df-top 22819 df-topon 22836 df-cn 23152 df-phtpy 24907 |
| This theorem is referenced by: phtpycn 24919 phtpy01 24921 phtpycom 24924 phtpyco2 24926 phtpycc 24927 pcohtpylem 24956 txsconnlem 35295 cvmliftphtlem 35372 |
| Copyright terms: Public domain | W3C validator |