MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyhtpy Structured version   Visualization version   GIF version

Theorem phtpyhtpy 24729
Description: A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
phtpyhtpy (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))

Proof of Theorem phtpyhtpy
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isphtpy.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
2 isphtpy.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2isphtpy 24728 . . 3 (𝜑 → ( ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ ( ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1)))))
4 simpl 482 . . 3 (( ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))) → ∈ (𝐹(II Htpy 𝐽)𝐺))
53, 4syl6bi 253 . 2 (𝜑 → ( ∈ (𝐹(PHtpy‘𝐽)𝐺) → ∈ (𝐹(II Htpy 𝐽)𝐺)))
65ssrdv 3988 1 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  wss 3948  cfv 6543  (class class class)co 7412  0cc0 11114  1c1 11115  [,]cicc 13332   Cn ccn 22949  IIcii 24616   Htpy chtpy 24714  PHtpycphtpy 24715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-map 8826  df-top 22617  df-topon 22634  df-cn 22952  df-phtpy 24718
This theorem is referenced by:  phtpycn  24730  phtpy01  24732  phtpycom  24735  phtpyco2  24737  phtpycc  24738  pcohtpylem  24767  txsconnlem  34530  cvmliftphtlem  34607
  Copyright terms: Public domain W3C validator