MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyhtpy Structured version   Visualization version   GIF version

Theorem phtpyhtpy 24918
Description: A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
phtpyhtpy (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))

Proof of Theorem phtpyhtpy
Dummy variables 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isphtpy.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
2 isphtpy.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
31, 2isphtpy 24917 . . 3 (𝜑 → ( ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ ( ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1)))))
4 simpl 482 . . 3 (( ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))) → ∈ (𝐹(II Htpy 𝐽)𝐺))
53, 4biimtrdi 253 . 2 (𝜑 → ( ∈ (𝐹(PHtpy‘𝐽)𝐺) → ∈ (𝐹(II Htpy 𝐽)𝐺)))
65ssrdv 3937 1 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3049  wss 3899  cfv 6489  (class class class)co 7355  0cc0 11016  1c1 11017  [,]cicc 13258   Cn ccn 23149  IIcii 24805   Htpy chtpy 24903  PHtpycphtpy 24904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-top 22819  df-topon 22836  df-cn 23152  df-phtpy 24907
This theorem is referenced by:  phtpycn  24919  phtpy01  24921  phtpycom  24924  phtpyco2  24926  phtpycc  24927  pcohtpylem  24956  txsconnlem  35295  cvmliftphtlem  35372
  Copyright terms: Public domain W3C validator