![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phtpyi | Structured version Visualization version GIF version |
Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
phtpyi.1 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
Ref | Expression |
---|---|
phtpyi | ⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phtpyi.1 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
2 | isphtpy.2 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
3 | isphtpy.3 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
4 | 2, 3 | isphtpy 25032 | . . . 4 ⊢ (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))) |
5 | 1, 4 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))) |
6 | 5 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))) |
7 | oveq2 7456 | . . . . 5 ⊢ (𝑠 = 𝐴 → (0𝐻𝑠) = (0𝐻𝐴)) | |
8 | 7 | eqeq1d 2742 | . . . 4 ⊢ (𝑠 = 𝐴 → ((0𝐻𝑠) = (𝐹‘0) ↔ (0𝐻𝐴) = (𝐹‘0))) |
9 | oveq2 7456 | . . . . 5 ⊢ (𝑠 = 𝐴 → (1𝐻𝑠) = (1𝐻𝐴)) | |
10 | 9 | eqeq1d 2742 | . . . 4 ⊢ (𝑠 = 𝐴 → ((1𝐻𝑠) = (𝐹‘1) ↔ (1𝐻𝐴) = (𝐹‘1))) |
11 | 8, 10 | anbi12d 631 | . . 3 ⊢ (𝑠 = 𝐴 → (((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)) ↔ ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1)))) |
12 | 11 | rspccva 3634 | . 2 ⊢ ((∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)) ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
13 | 6, 12 | sylan 579 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 [,]cicc 13410 Cn ccn 23253 IIcii 24920 Htpy chtpy 25018 PHtpycphtpy 25019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-top 22921 df-topon 22938 df-cn 23256 df-phtpy 25022 |
This theorem is referenced by: phtpy01 25036 phtpycom 25039 phtpyco2 25041 phtpycc 25042 pcohtpylem 25071 txsconnlem 35208 cvmliftphtlem 35285 cvmliftpht 35286 |
Copyright terms: Public domain | W3C validator |