| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phtpyi | Structured version Visualization version GIF version | ||
| Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| phtpyi.1 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
| Ref | Expression |
|---|---|
| phtpyi | ⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phtpyi.1 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
| 2 | isphtpy.2 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 3 | isphtpy.3 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 4 | 2, 3 | isphtpy 24878 | . . . 4 ⊢ (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))) |
| 5 | 1, 4 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))) |
| 6 | 5 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))) |
| 7 | oveq2 7357 | . . . . 5 ⊢ (𝑠 = 𝐴 → (0𝐻𝑠) = (0𝐻𝐴)) | |
| 8 | 7 | eqeq1d 2731 | . . . 4 ⊢ (𝑠 = 𝐴 → ((0𝐻𝑠) = (𝐹‘0) ↔ (0𝐻𝐴) = (𝐹‘0))) |
| 9 | oveq2 7357 | . . . . 5 ⊢ (𝑠 = 𝐴 → (1𝐻𝑠) = (1𝐻𝐴)) | |
| 10 | 9 | eqeq1d 2731 | . . . 4 ⊢ (𝑠 = 𝐴 → ((1𝐻𝑠) = (𝐹‘1) ↔ (1𝐻𝐴) = (𝐹‘1))) |
| 11 | 8, 10 | anbi12d 632 | . . 3 ⊢ (𝑠 = 𝐴 → (((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)) ↔ ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1)))) |
| 12 | 11 | rspccva 3576 | . 2 ⊢ ((∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)) ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
| 13 | 6, 12 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 [,]cicc 13251 Cn ccn 23109 IIcii 24766 Htpy chtpy 24864 PHtpycphtpy 24865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 df-top 22779 df-topon 22796 df-cn 23112 df-phtpy 24868 |
| This theorem is referenced by: phtpy01 24882 phtpycom 24885 phtpyco2 24887 phtpycc 24888 pcohtpylem 24917 txsconnlem 35213 cvmliftphtlem 35290 cvmliftpht 35291 |
| Copyright terms: Public domain | W3C validator |