![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phtpyi | Structured version Visualization version GIF version |
Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
phtpyi.1 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
Ref | Expression |
---|---|
phtpyi | ⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phtpyi.1 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
2 | isphtpy.2 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
3 | isphtpy.3 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
4 | 2, 3 | isphtpy 24927 | . . . 4 ⊢ (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))) |
5 | 1, 4 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))) |
6 | 5 | simprd 494 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))) |
7 | oveq2 7434 | . . . . 5 ⊢ (𝑠 = 𝐴 → (0𝐻𝑠) = (0𝐻𝐴)) | |
8 | 7 | eqeq1d 2730 | . . . 4 ⊢ (𝑠 = 𝐴 → ((0𝐻𝑠) = (𝐹‘0) ↔ (0𝐻𝐴) = (𝐹‘0))) |
9 | oveq2 7434 | . . . . 5 ⊢ (𝑠 = 𝐴 → (1𝐻𝑠) = (1𝐻𝐴)) | |
10 | 9 | eqeq1d 2730 | . . . 4 ⊢ (𝑠 = 𝐴 → ((1𝐻𝑠) = (𝐹‘1) ↔ (1𝐻𝐴) = (𝐹‘1))) |
11 | 8, 10 | anbi12d 630 | . . 3 ⊢ (𝑠 = 𝐴 → (((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)) ↔ ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1)))) |
12 | 11 | rspccva 3610 | . 2 ⊢ ((∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)) ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
13 | 6, 12 | sylan 578 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ‘cfv 6553 (class class class)co 7426 0cc0 11146 1c1 11147 [,]cicc 13367 Cn ccn 23148 IIcii 24815 Htpy chtpy 24913 PHtpycphtpy 24914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 7999 df-2nd 8000 df-map 8853 df-top 22816 df-topon 22833 df-cn 23151 df-phtpy 24917 |
This theorem is referenced by: phtpy01 24931 phtpycom 24934 phtpyco2 24936 phtpycc 24937 pcohtpylem 24966 txsconnlem 34883 cvmliftphtlem 34960 cvmliftpht 34961 |
Copyright terms: Public domain | W3C validator |