MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyi Structured version   Visualization version   GIF version

Theorem phtpyi 24859
Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
phtpyi.1 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Assertion
Ref Expression
phtpyi ((𝜑𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1)))

Proof of Theorem phtpyi
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpyi.1 . . . 4 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
2 isphtpy.2 . . . . 5 (𝜑𝐹 ∈ (II Cn 𝐽))
3 isphtpy.3 . . . . 5 (𝜑𝐺 ∈ (II Cn 𝐽))
42, 3isphtpy 24856 . . . 4 (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))))
51, 4mpbid 232 . . 3 (𝜑 → (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))
65simprd 495 . 2 (𝜑 → ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))
7 oveq2 7377 . . . . 5 (𝑠 = 𝐴 → (0𝐻𝑠) = (0𝐻𝐴))
87eqeq1d 2731 . . . 4 (𝑠 = 𝐴 → ((0𝐻𝑠) = (𝐹‘0) ↔ (0𝐻𝐴) = (𝐹‘0)))
9 oveq2 7377 . . . . 5 (𝑠 = 𝐴 → (1𝐻𝑠) = (1𝐻𝐴))
109eqeq1d 2731 . . . 4 (𝑠 = 𝐴 → ((1𝐻𝑠) = (𝐹‘1) ↔ (1𝐻𝐴) = (𝐹‘1)))
118, 10anbi12d 632 . . 3 (𝑠 = 𝐴 → (((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)) ↔ ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))))
1211rspccva 3584 . 2 ((∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)) ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1)))
136, 12sylan 580 1 ((𝜑𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  [,]cicc 13285   Cn ccn 23087  IIcii 24744   Htpy chtpy 24842  PHtpycphtpy 24843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-top 22757  df-topon 22774  df-cn 23090  df-phtpy 24846
This theorem is referenced by:  phtpy01  24860  phtpycom  24863  phtpyco2  24865  phtpycc  24866  pcohtpylem  24895  txsconnlem  35200  cvmliftphtlem  35277  cvmliftpht  35278
  Copyright terms: Public domain W3C validator