![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phtpyi | Structured version Visualization version GIF version |
Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
phtpyi.1 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
Ref | Expression |
---|---|
phtpyi | ⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phtpyi.1 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
2 | isphtpy.2 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
3 | isphtpy.3 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
4 | 2, 3 | isphtpy 24497 | . . . 4 ⊢ (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))) |
5 | 1, 4 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))) |
6 | 5 | simprd 497 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))) |
7 | oveq2 7417 | . . . . 5 ⊢ (𝑠 = 𝐴 → (0𝐻𝑠) = (0𝐻𝐴)) | |
8 | 7 | eqeq1d 2735 | . . . 4 ⊢ (𝑠 = 𝐴 → ((0𝐻𝑠) = (𝐹‘0) ↔ (0𝐻𝐴) = (𝐹‘0))) |
9 | oveq2 7417 | . . . . 5 ⊢ (𝑠 = 𝐴 → (1𝐻𝑠) = (1𝐻𝐴)) | |
10 | 9 | eqeq1d 2735 | . . . 4 ⊢ (𝑠 = 𝐴 → ((1𝐻𝑠) = (𝐹‘1) ↔ (1𝐻𝐴) = (𝐹‘1))) |
11 | 8, 10 | anbi12d 632 | . . 3 ⊢ (𝑠 = 𝐴 → (((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)) ↔ ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1)))) |
12 | 11 | rspccva 3612 | . 2 ⊢ ((∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)) ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
13 | 6, 12 | sylan 581 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ‘cfv 6544 (class class class)co 7409 0cc0 11110 1c1 11111 [,]cicc 13327 Cn ccn 22728 IIcii 24391 Htpy chtpy 24483 PHtpycphtpy 24484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 df-top 22396 df-topon 22413 df-cn 22731 df-phtpy 24487 |
This theorem is referenced by: phtpy01 24501 phtpycom 24504 phtpyco2 24506 phtpycc 24507 pcohtpylem 24535 txsconnlem 34231 cvmliftphtlem 34308 cvmliftpht 34309 |
Copyright terms: Public domain | W3C validator |