MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prfiALT Structured version   Visualization version   GIF version

Theorem prfiALT 9394
Description: Shorter proof of prfi 9393 using ax-un 7772. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
prfiALT {𝐴, 𝐵} ∈ Fin

Proof of Theorem prfiALT
StepHypRef Expression
1 df-pr 4651 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 snfi 9111 . . 3 {𝐴} ∈ Fin
3 snfi 9111 . . 3 {𝐵} ∈ Fin
4 unfi 9240 . . 3 (({𝐴} ∈ Fin ∧ {𝐵} ∈ Fin) → ({𝐴} ∪ {𝐵}) ∈ Fin)
52, 3, 4mp2an 691 . 2 ({𝐴} ∪ {𝐵}) ∈ Fin
61, 5eqeltri 2840 1 {𝐴, 𝐵} ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  cun 3974  {csn 4648  {cpr 4650  Fincfn 9005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-om 7906  df-1o 8524  df-en 9006  df-fin 9009
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator