MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodmul Structured version   Visualization version   GIF version

Theorem fprodmul 15900
Description: The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodmul.1 (πœ‘ β†’ 𝐴 ∈ Fin)
fprodmul.2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
fprodmul.3 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)
Assertion
Ref Expression
fprodmul (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 Β· 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 Β· βˆπ‘˜ ∈ 𝐴 𝐢))
Distinct variable groups:   𝐴,π‘˜   πœ‘,π‘˜
Allowed substitution hints:   𝐡(π‘˜)   𝐢(π‘˜)

Proof of Theorem fprodmul
Dummy variables 𝑓 π‘š 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1t1e1 12370 . . . . 5 (1 Β· 1) = 1
2 prod0 15883 . . . . . 6 βˆπ‘˜ ∈ βˆ… 𝐡 = 1
3 prod0 15883 . . . . . 6 βˆπ‘˜ ∈ βˆ… 𝐢 = 1
42, 3oveq12i 7417 . . . . 5 (βˆπ‘˜ ∈ βˆ… 𝐡 Β· βˆπ‘˜ ∈ βˆ… 𝐢) = (1 Β· 1)
5 prod0 15883 . . . . 5 βˆπ‘˜ ∈ βˆ… (𝐡 Β· 𝐢) = 1
61, 4, 53eqtr4ri 2771 . . . 4 βˆπ‘˜ ∈ βˆ… (𝐡 Β· 𝐢) = (βˆπ‘˜ ∈ βˆ… 𝐡 Β· βˆπ‘˜ ∈ βˆ… 𝐢)
7 prodeq1 15849 . . . 4 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 Β· 𝐢) = βˆπ‘˜ ∈ βˆ… (𝐡 Β· 𝐢))
8 prodeq1 15849 . . . . 5 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘˜ ∈ βˆ… 𝐡)
9 prodeq1 15849 . . . . 5 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐢 = βˆπ‘˜ ∈ βˆ… 𝐢)
108, 9oveq12d 7423 . . . 4 (𝐴 = βˆ… β†’ (βˆπ‘˜ ∈ 𝐴 𝐡 Β· βˆπ‘˜ ∈ 𝐴 𝐢) = (βˆπ‘˜ ∈ βˆ… 𝐡 Β· βˆπ‘˜ ∈ βˆ… 𝐢))
116, 7, 103eqtr4a 2798 . . 3 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 Β· 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 Β· βˆπ‘˜ ∈ 𝐴 𝐢))
1211a1i 11 . 2 (πœ‘ β†’ (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 Β· 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 Β· βˆπ‘˜ ∈ 𝐴 𝐢)))
13 simprl 769 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β™―β€˜π΄) ∈ β„•)
14 nnuz 12861 . . . . . . . . 9 β„• = (β„€β‰₯β€˜1)
1513, 14eleqtrdi 2843 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜1))
16 fprodmul.2 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
1716fmpttd 7111 . . . . . . . . . . 11 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
1817adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
19 f1of 6830 . . . . . . . . . . 11 (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
2019ad2antll 727 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
21 fco 6738 . . . . . . . . . 10 (((π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚ ∧ 𝑓:(1...(β™―β€˜π΄))⟢𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2218, 20, 21syl2anc 584 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2322ffvelcdmda 7083 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) ∈ β„‚)
24 fprodmul.3 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)
2524fmpttd 7111 . . . . . . . . . . 11 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐢):π΄βŸΆβ„‚)
2625adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐢):π΄βŸΆβ„‚)
27 fco 6738 . . . . . . . . . 10 (((π‘˜ ∈ 𝐴 ↦ 𝐢):π΄βŸΆβ„‚ ∧ 𝑓:(1...(β™―β€˜π΄))⟢𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2826, 20, 27syl2anc 584 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2928ffvelcdmda 7083 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›) ∈ β„‚)
3020ffvelcdmda 7083 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (π‘“β€˜π‘›) ∈ 𝐴)
31 simpr 485 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ π‘˜ ∈ 𝐴)
3216, 24mulcld 11230 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝐡 Β· 𝐢) ∈ β„‚)
33 eqid 2732 . . . . . . . . . . . . . . 15 (π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢)) = (π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))
3433fvmpt2 7006 . . . . . . . . . . . . . 14 ((π‘˜ ∈ 𝐴 ∧ (𝐡 Β· 𝐢) ∈ β„‚) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘˜) = (𝐡 Β· 𝐢))
3531, 32, 34syl2anc 584 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘˜) = (𝐡 Β· 𝐢))
36 eqid 2732 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ 𝐴 ↦ 𝐡) = (π‘˜ ∈ 𝐴 ↦ 𝐡)
3736fvmpt2 7006 . . . . . . . . . . . . . . 15 ((π‘˜ ∈ 𝐴 ∧ 𝐡 ∈ β„‚) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = 𝐡)
3831, 16, 37syl2anc 584 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = 𝐡)
39 eqid 2732 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ 𝐴 ↦ 𝐢) = (π‘˜ ∈ 𝐴 ↦ 𝐢)
4039fvmpt2 7006 . . . . . . . . . . . . . . 15 ((π‘˜ ∈ 𝐴 ∧ 𝐢 ∈ β„‚) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) = 𝐢)
4131, 24, 40syl2anc 584 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) = 𝐢)
4238, 41oveq12d 7423 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) = (𝐡 Β· 𝐢))
4335, 42eqtr4d 2775 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)))
4443ralrimiva 3146 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)))
4544ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)))
46 nffvmpt1 6899 . . . . . . . . . . . 12 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜(π‘“β€˜π‘›))
47 nffvmpt1 6899 . . . . . . . . . . . . 13 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›))
48 nfcv 2903 . . . . . . . . . . . . 13 β„²π‘˜ Β·
49 nffvmpt1 6899 . . . . . . . . . . . . 13 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))
5047, 48, 49nfov 7435 . . . . . . . . . . . 12 β„²π‘˜(((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
5146, 50nfeq 2916 . . . . . . . . . . 11 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
52 fveq2 6888 . . . . . . . . . . . 12 (π‘˜ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘˜) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜(π‘“β€˜π‘›)))
53 fveq2 6888 . . . . . . . . . . . . 13 (π‘˜ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
54 fveq2 6888 . . . . . . . . . . . . 13 (π‘˜ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
5553, 54oveq12d 7423 . . . . . . . . . . . 12 (π‘˜ = (π‘“β€˜π‘›) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))))
5652, 55eqeq12d 2748 . . . . . . . . . . 11 (π‘˜ = (π‘“β€˜π‘›) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) ↔ ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))))
5751, 56rspc 3600 . . . . . . . . . 10 ((π‘“β€˜π‘›) ∈ 𝐴 β†’ (βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))))
5830, 45, 57sylc 65 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))))
59 fvco3 6987 . . . . . . . . . 10 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢)) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜(π‘“β€˜π‘›)))
6020, 59sylan 580 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢)) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜(π‘“β€˜π‘›)))
61 fvco3 6987 . . . . . . . . . . 11 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
6220, 61sylan 580 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
63 fvco3 6987 . . . . . . . . . . 11 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
6420, 63sylan 580 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
6562, 64oveq12d 7423 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ ((((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) Β· (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) Β· ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))))
6658, 60, 653eqtr4d 2782 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢)) ∘ 𝑓)β€˜π‘›) = ((((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) Β· (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›)))
6715, 23, 29, 66prodfmul 15832 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢)) ∘ 𝑓))β€˜(β™―β€˜π΄)) = ((seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)) Β· (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓))β€˜(β™―β€˜π΄))))
68 fveq2 6888 . . . . . . . 8 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜(π‘“β€˜π‘›)))
69 simprr 771 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)
7032fmpttd 7111 . . . . . . . . . 10 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢)):π΄βŸΆβ„‚)
7170adantr 481 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢)):π΄βŸΆβ„‚)
7271ffvelcdmda 7083 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘š) ∈ β„‚)
7368, 13, 69, 72, 60fprod 15881 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢)) ∘ 𝑓))β€˜(β™―β€˜π΄)))
74 fveq2 6888 . . . . . . . . 9 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
7518ffvelcdmda 7083 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) ∈ β„‚)
7674, 13, 69, 75, 62fprod 15881 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)))
77 fveq2 6888 . . . . . . . . 9 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
7826ffvelcdmda 7083 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) ∈ β„‚)
7977, 13, 69, 78, 64fprod 15881 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓))β€˜(β™―β€˜π΄)))
8076, 79oveq12d 7423 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) Β· βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š)) = ((seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)) Β· (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓))β€˜(β™―β€˜π΄))))
8167, 73, 803eqtr4d 2782 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘š) = (βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) Β· βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š)))
82 prodfc 15885 . . . . . 6 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 Β· 𝐢))β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 (𝐡 Β· 𝐢)
83 prodfc 15885 . . . . . . 7 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 𝐡
84 prodfc 15885 . . . . . . 7 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 𝐢
8583, 84oveq12i 7417 . . . . . 6 (βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) Β· βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š)) = (βˆπ‘˜ ∈ 𝐴 𝐡 Β· βˆπ‘˜ ∈ 𝐴 𝐢)
8681, 82, 853eqtr3g 2795 . . . . 5 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 Β· 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 Β· βˆπ‘˜ ∈ 𝐴 𝐢))
8786expr 457 . . . 4 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 Β· 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 Β· βˆπ‘˜ ∈ 𝐴 𝐢)))
8887exlimdv 1936 . . 3 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 Β· 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 Β· βˆπ‘˜ ∈ 𝐴 𝐢)))
8988expimpd 454 . 2 (πœ‘ β†’ (((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴) β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 Β· 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 Β· βˆπ‘˜ ∈ 𝐴 𝐢)))
90 fprodmul.1 . . 3 (πœ‘ β†’ 𝐴 ∈ Fin)
91 fz1f1o 15652 . . 3 (𝐴 ∈ Fin β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
9290, 91syl 17 . 2 (πœ‘ β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
9312, 89, 92mpjaod 858 1 (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 Β· 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 Β· βˆπ‘˜ ∈ 𝐴 𝐢))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∨ wo 845   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆ…c0 4321   ↦ cmpt 5230   ∘ ccom 5679  βŸΆwf 6536  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  β„‚cc 11104  1c1 11107   Β· cmul 11111  β„•cn 12208  β„€β‰₯cuz 12818  ...cfz 13480  seqcseq 13962  β™―chash 14286  βˆcprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-prod 15846
This theorem is referenced by:  fprodsplit  15906  risefallfac  15964  gausslemma2dlem5  26863  gausslemma2dlem6  26864  bcprod  34696
  Copyright terms: Public domain W3C validator