Step | Hyp | Ref
| Expression |
1 | | 1t1e1 12135 |
. . . . 5
⊢ (1
· 1) = 1 |
2 | | prod0 15653 |
. . . . . 6
⊢
∏𝑘 ∈
∅ 𝐵 =
1 |
3 | | prod0 15653 |
. . . . . 6
⊢
∏𝑘 ∈
∅ 𝐶 =
1 |
4 | 2, 3 | oveq12i 7287 |
. . . . 5
⊢
(∏𝑘 ∈
∅ 𝐵 ·
∏𝑘 ∈ ∅
𝐶) = (1 ·
1) |
5 | | prod0 15653 |
. . . . 5
⊢
∏𝑘 ∈
∅ (𝐵 · 𝐶) = 1 |
6 | 1, 4, 5 | 3eqtr4ri 2777 |
. . . 4
⊢
∏𝑘 ∈
∅ (𝐵 · 𝐶) = (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶) |
7 | | prodeq1 15619 |
. . . 4
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = ∏𝑘 ∈ ∅ (𝐵 · 𝐶)) |
8 | | prodeq1 15619 |
. . . . 5
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵) |
9 | | prodeq1 15619 |
. . . . 5
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶) |
10 | 8, 9 | oveq12d 7293 |
. . . 4
⊢ (𝐴 = ∅ → (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶) = (∏𝑘 ∈ ∅ 𝐵 · ∏𝑘 ∈ ∅ 𝐶)) |
11 | 6, 7, 10 | 3eqtr4a 2804 |
. . 3
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶)) |
12 | 11 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶))) |
13 | | simprl 768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
14 | | nnuz 12621 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
15 | 13, 14 | eleqtrdi 2849 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
(ℤ≥‘1)) |
16 | | fprodmul.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
17 | 16 | fmpttd 6989 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
18 | 17 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
19 | | f1of 6716 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
20 | 19 | ad2antll 726 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
21 | | fco 6624 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
22 | 18, 20, 21 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
23 | 22 | ffvelrnda 6961 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ) |
24 | | fprodmul.3 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
25 | 24 | fmpttd 6989 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
26 | 25 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
27 | | fco 6624 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
28 | 26, 20, 27 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
29 | 28 | ffvelrnda 6961 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ) |
30 | 20 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓‘𝑛) ∈ 𝐴) |
31 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
32 | 16, 24 | mulcld 10995 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 · 𝐶) ∈ ℂ) |
33 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) = (𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) |
34 | 33 | fvmpt2 6886 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝐴 ∧ (𝐵 · 𝐶) ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (𝐵 · 𝐶)) |
35 | 31, 32, 34 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (𝐵 · 𝐶)) |
36 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
37 | 36 | fvmpt2 6886 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
38 | 31, 16, 37 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
39 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
40 | 39 | fvmpt2 6886 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
41 | 31, 24, 40 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
42 | 38, 41 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) = (𝐵 · 𝐶)) |
43 | 35, 42 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
44 | 43 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
45 | 44 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
46 | | nffvmpt1 6785 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛)) |
47 | | nffvmpt1 6785 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) |
48 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘
· |
49 | | nffvmpt1 6785 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)) |
50 | 47, 48, 49 | nfov 7305 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
51 | 46, 50 | nfeq 2920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
52 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛))) |
53 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
54 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
55 | 53, 54 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑛) → (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
56 | 52, 55 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑛) → (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) ↔ ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))))) |
57 | 51, 56 | rspc 3549 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) → ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))))) |
58 | 30, 45, 57 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
59 | | fvco3 6867 |
. . . . . . . . . 10
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛))) |
60 | 20, 59 | sylan 580 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛))) |
61 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
62 | 20, 61 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
63 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
64 | 20, 63 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
65 | 62, 64 | oveq12d 7293 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) · (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) · ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
66 | 58, 60, 65 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) · (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛))) |
67 | 15, 23, 29, 66 | prodfmul 15602 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (seq1( · ,
((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓))‘(♯‘𝐴)) = ((seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)) · (seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(♯‘𝐴)))) |
68 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘(𝑓‘𝑛))) |
69 | | simprr 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
70 | 32 | fmpttd 6989 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)):𝐴⟶ℂ) |
71 | 70 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)):𝐴⟶ℂ) |
72 | 71 | ffvelrnda 6961 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) ∈ ℂ) |
73 | 68, 13, 69, 72, 60 | fprod 15651 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = (seq1( · , ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∘ 𝑓))‘(♯‘𝐴))) |
74 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
75 | 18 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
76 | 74, 13, 69, 75, 62 | fprod 15651 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) |
77 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
78 | 26 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) ∈ ℂ) |
79 | 77, 13, 69, 78, 64 | fprod 15651 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = (seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(♯‘𝐴))) |
80 | 76, 79 | oveq12d 7293 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) · ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) = ((seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)) · (seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(♯‘𝐴)))) |
81 | 67, 73, 80 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = (∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) · ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚))) |
82 | | prodfc 15655 |
. . . . . 6
⊢
∏𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 · 𝐶))‘𝑚) = ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) |
83 | | prodfc 15655 |
. . . . . . 7
⊢
∏𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐵 |
84 | | prodfc 15655 |
. . . . . . 7
⊢
∏𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐶 |
85 | 83, 84 | oveq12i 7287 |
. . . . . 6
⊢
(∏𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) · ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶) |
86 | 81, 82, 85 | 3eqtr3g 2801 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶)) |
87 | 86 | expr 457 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶))) |
88 | 87 | exlimdv 1936 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶))) |
89 | 88 | expimpd 454 |
. 2
⊢ (𝜑 → (((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶))) |
90 | | fprodmul.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
91 | | fz1f1o 15422 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
92 | 90, 91 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
93 | 12, 89, 92 | mpjaod 857 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶)) |