| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodconst | Structured version Visualization version GIF version | ||
| Description: The product of constant terms (𝑘 is not free in 𝐵). (Contributed by Scott Fenton, 12-Jan-2018.) |
| Ref | Expression |
|---|---|
| fprodconst | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp0 13974 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵↑0) = 1) | |
| 2 | 1 | eqcomd 2739 | . . . 4 ⊢ (𝐵 ∈ ℂ → 1 = (𝐵↑0)) |
| 3 | prodeq1 15816 | . . . . . 6 ⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵) | |
| 4 | prod0 15852 | . . . . . 6 ⊢ ∏𝑘 ∈ ∅ 𝐵 = 1 | |
| 5 | 3, 4 | eqtrdi 2784 | . . . . 5 ⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = 1) |
| 6 | fveq2 6828 | . . . . . . 7 ⊢ (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅)) | |
| 7 | hash0 14276 | . . . . . . 7 ⊢ (♯‘∅) = 0 | |
| 8 | 6, 7 | eqtrdi 2784 | . . . . . 6 ⊢ (𝐴 = ∅ → (♯‘𝐴) = 0) |
| 9 | 8 | oveq2d 7368 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐵↑(♯‘𝐴)) = (𝐵↑0)) |
| 10 | 5, 9 | eqeq12d 2749 | . . . 4 ⊢ (𝐴 = ∅ → (∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)) ↔ 1 = (𝐵↑0))) |
| 11 | 2, 10 | syl5ibrcom 247 | . . 3 ⊢ (𝐵 ∈ ℂ → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)))) |
| 12 | 11 | adantl 481 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)))) |
| 13 | eqidd 2734 | . . . . . . 7 ⊢ (𝑘 = (𝑓‘𝑛) → 𝐵 = 𝐵) | |
| 14 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈ ℕ) | |
| 15 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) | |
| 16 | simpllr 775 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 17 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝐵 ∈ ℂ) | |
| 18 | elfznn 13455 | . . . . . . . . 9 ⊢ (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ) | |
| 19 | 18 | adantl 481 | . . . . . . . 8 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ ℕ) |
| 20 | fvconst2g 7142 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵) | |
| 21 | 17, 19, 20 | syl2anc 584 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵) |
| 22 | 13, 14, 15, 16, 21 | fprod 15850 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 𝐵 = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴))) |
| 23 | expnnval 13973 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ (♯‘𝐴) ∈ ℕ) → (𝐵↑(♯‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴))) | |
| 24 | 23 | ad2ant2lr 748 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐵↑(♯‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴))) |
| 25 | 22, 24 | eqtr4d 2771 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴))) |
| 26 | 25 | expr 456 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)))) |
| 27 | 26 | exlimdv 1934 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)))) |
| 28 | 27 | expimpd 453 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)))) |
| 29 | fz1f1o 15619 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) | |
| 30 | 29 | adantr 480 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 31 | 12, 28, 30 | mpjaod 860 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∅c0 4282 {csn 4575 × cxp 5617 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 ℂcc 11011 0cc0 11013 1c1 11014 · cmul 11018 ℕcn 12132 ...cfz 13409 seqcseq 13910 ↑cexp 13970 ♯chash 14239 ∏cprod 15812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-prod 15813 |
| This theorem is referenced by: risefallfac 15933 gausslemma2dlem5 27310 gausslemma2dlem6 27311 breprexpnat 34668 circlemethnat 34675 circlevma 34676 circlemethhgt 34677 bcprod 35803 etransclem23 46379 hoicvrrex 46678 ovnhoilem1 46723 vonsn 46813 |
| Copyright terms: Public domain | W3C validator |