Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodconst Structured version   Visualization version   GIF version

Theorem fprodconst 15324
 Description: The product of constant terms (𝑘 is not free in 𝐵.) (Contributed by Scott Fenton, 12-Jan-2018.)
Assertion
Ref Expression
fprodconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fprodconst
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp0 13425 . . . . 5 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
21eqcomd 2825 . . . 4 (𝐵 ∈ ℂ → 1 = (𝐵↑0))
3 prodeq1 15255 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
4 prod0 15289 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
53, 4syl6eq 2870 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
6 fveq2 6663 . . . . . . 7 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
7 hash0 13720 . . . . . . 7 (♯‘∅) = 0
86, 7syl6eq 2870 . . . . . 6 (𝐴 = ∅ → (♯‘𝐴) = 0)
98oveq2d 7164 . . . . 5 (𝐴 = ∅ → (𝐵↑(♯‘𝐴)) = (𝐵↑0))
105, 9eqeq12d 2835 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)) ↔ 1 = (𝐵↑0)))
112, 10syl5ibrcom 249 . . 3 (𝐵 ∈ ℂ → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
1211adantl 484 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
13 eqidd 2820 . . . . . . 7 (𝑘 = (𝑓𝑛) → 𝐵 = 𝐵)
14 simprl 769 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
15 simprr 771 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
16 simpllr 774 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
17 simpllr 774 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝐵 ∈ ℂ)
18 elfznn 12928 . . . . . . . . 9 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
1918adantl 484 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ ℕ)
20 fvconst2g 6957 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2117, 19, 20syl2anc 586 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2213, 14, 15, 16, 21fprod 15287 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴)))
23 expnnval 13424 . . . . . . 7 ((𝐵 ∈ ℂ ∧ (♯‘𝐴) ∈ ℕ) → (𝐵↑(♯‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴)))
2423ad2ant2lr 746 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐵↑(♯‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴)))
2522, 24eqtr4d 2857 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
2625expr 459 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
2726exlimdv 1927 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
2827expimpd 456 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
29 fz1f1o 15059 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
3029adantr 483 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
3112, 28, 30mpjaod 856 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∨ wo 843   = wceq 1530  ∃wex 1773   ∈ wcel 2107  ∅c0 4289  {csn 4559   × cxp 5546  –1-1-onto→wf1o 6347  ‘cfv 6348  (class class class)co 7148  Fincfn 8501  ℂcc 10527  0cc0 10529  1c1 10530   · cmul 10534  ℕcn 11630  ...cfz 12884  seqcseq 13361  ↑cexp 13421  ♯chash 13682  ∏cprod 15251 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252 This theorem is referenced by:  risefallfac  15370  gausslemma2dlem5  25939  gausslemma2dlem6  25940  breprexpnat  31893  circlemethnat  31900  circlevma  31901  circlemethhgt  31902  bcprod  32958  etransclem23  42527  hoicvrrex  42823  ovnhoilem1  42868  vonsn  42958
 Copyright terms: Public domain W3C validator