| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodconst | Structured version Visualization version GIF version | ||
| Description: The product of constant terms (𝑘 is not free in 𝐵). (Contributed by Scott Fenton, 12-Jan-2018.) |
| Ref | Expression |
|---|---|
| fprodconst | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp0 13990 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵↑0) = 1) | |
| 2 | 1 | eqcomd 2735 | . . . 4 ⊢ (𝐵 ∈ ℂ → 1 = (𝐵↑0)) |
| 3 | prodeq1 15832 | . . . . . 6 ⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵) | |
| 4 | prod0 15868 | . . . . . 6 ⊢ ∏𝑘 ∈ ∅ 𝐵 = 1 | |
| 5 | 3, 4 | eqtrdi 2780 | . . . . 5 ⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = 1) |
| 6 | fveq2 6826 | . . . . . . 7 ⊢ (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅)) | |
| 7 | hash0 14292 | . . . . . . 7 ⊢ (♯‘∅) = 0 | |
| 8 | 6, 7 | eqtrdi 2780 | . . . . . 6 ⊢ (𝐴 = ∅ → (♯‘𝐴) = 0) |
| 9 | 8 | oveq2d 7369 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐵↑(♯‘𝐴)) = (𝐵↑0)) |
| 10 | 5, 9 | eqeq12d 2745 | . . . 4 ⊢ (𝐴 = ∅ → (∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)) ↔ 1 = (𝐵↑0))) |
| 11 | 2, 10 | syl5ibrcom 247 | . . 3 ⊢ (𝐵 ∈ ℂ → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)))) |
| 12 | 11 | adantl 481 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)))) |
| 13 | eqidd 2730 | . . . . . . 7 ⊢ (𝑘 = (𝑓‘𝑛) → 𝐵 = 𝐵) | |
| 14 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈ ℕ) | |
| 15 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) | |
| 16 | simpllr 775 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 17 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝐵 ∈ ℂ) | |
| 18 | elfznn 13474 | . . . . . . . . 9 ⊢ (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ) | |
| 19 | 18 | adantl 481 | . . . . . . . 8 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ ℕ) |
| 20 | fvconst2g 7142 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵) | |
| 21 | 17, 19, 20 | syl2anc 584 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵) |
| 22 | 13, 14, 15, 16, 21 | fprod 15866 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 𝐵 = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴))) |
| 23 | expnnval 13989 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ (♯‘𝐴) ∈ ℕ) → (𝐵↑(♯‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴))) | |
| 24 | 23 | ad2ant2lr 748 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐵↑(♯‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴))) |
| 25 | 22, 24 | eqtr4d 2767 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴))) |
| 26 | 25 | expr 456 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)))) |
| 27 | 26 | exlimdv 1933 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)))) |
| 28 | 27 | expimpd 453 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴)))) |
| 29 | fz1f1o 15635 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) | |
| 30 | 29 | adantr 480 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 31 | 12, 28, 30 | mpjaod 860 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4286 {csn 4579 × cxp 5621 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 ℂcc 11026 0cc0 11028 1c1 11029 · cmul 11033 ℕcn 12146 ...cfz 13428 seqcseq 13926 ↑cexp 13986 ♯chash 14255 ∏cprod 15828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-prod 15829 |
| This theorem is referenced by: risefallfac 15949 gausslemma2dlem5 27298 gausslemma2dlem6 27299 breprexpnat 34601 circlemethnat 34608 circlevma 34609 circlemethhgt 34610 bcprod 35710 etransclem23 46239 hoicvrrex 46538 ovnhoilem1 46583 vonsn 46673 |
| Copyright terms: Public domain | W3C validator |