MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodconst Structured version   Visualization version   GIF version

Theorem fprodconst 15570
Description: The product of constant terms (𝑘 is not free in 𝐵). (Contributed by Scott Fenton, 12-Jan-2018.)
Assertion
Ref Expression
fprodconst ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem fprodconst
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exp0 13668 . . . . 5 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
21eqcomd 2745 . . . 4 (𝐵 ∈ ℂ → 1 = (𝐵↑0))
3 prodeq1 15501 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
4 prod0 15535 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
53, 4eqtrdi 2796 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
6 fveq2 6738 . . . . . . 7 (𝐴 = ∅ → (♯‘𝐴) = (♯‘∅))
7 hash0 13964 . . . . . . 7 (♯‘∅) = 0
86, 7eqtrdi 2796 . . . . . 6 (𝐴 = ∅ → (♯‘𝐴) = 0)
98oveq2d 7250 . . . . 5 (𝐴 = ∅ → (𝐵↑(♯‘𝐴)) = (𝐵↑0))
105, 9eqeq12d 2755 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)) ↔ 1 = (𝐵↑0)))
112, 10syl5ibrcom 250 . . 3 (𝐵 ∈ ℂ → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
1211adantl 485 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
13 eqidd 2740 . . . . . . 7 (𝑘 = (𝑓𝑛) → 𝐵 = 𝐵)
14 simprl 771 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
15 simprr 773 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
16 simpllr 776 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
17 simpllr 776 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝐵 ∈ ℂ)
18 elfznn 13168 . . . . . . . . 9 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
1918adantl 485 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ ℕ)
20 fvconst2g 7038 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2117, 19, 20syl2anc 587 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵)
2213, 14, 15, 16, 21fprod 15533 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴)))
23 expnnval 13667 . . . . . . 7 ((𝐵 ∈ ℂ ∧ (♯‘𝐴) ∈ ℕ) → (𝐵↑(♯‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴)))
2423ad2ant2lr 748 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐵↑(♯‘𝐴)) = (seq1( · , (ℕ × {𝐵}))‘(♯‘𝐴)))
2522, 24eqtr4d 2782 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
2625expr 460 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
2726exlimdv 1941 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
2827expimpd 457 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴))))
29 fz1f1o 15304 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
3029adantr 484 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
3112, 28, 30mpjaod 860 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847   = wceq 1543  wex 1787  wcel 2112  c0 4253  {csn 4557   × cxp 5566  1-1-ontowf1o 6399  cfv 6400  (class class class)co 7234  Fincfn 8649  cc 10754  0cc0 10756  1c1 10757   · cmul 10761  cn 11857  ...cfz 13122  seqcseq 13603  cexp 13664  chash 13926  cprod 15497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-inf2 9283  ax-cnex 10812  ax-resscn 10813  ax-1cn 10814  ax-icn 10815  ax-addcl 10816  ax-addrcl 10817  ax-mulcl 10818  ax-mulrcl 10819  ax-mulcom 10820  ax-addass 10821  ax-mulass 10822  ax-distr 10823  ax-i2m1 10824  ax-1ne0 10825  ax-1rid 10826  ax-rnegex 10827  ax-rrecex 10828  ax-cnre 10829  ax-pre-lttri 10830  ax-pre-lttrn 10831  ax-pre-ltadd 10832  ax-pre-mulgt0 10833  ax-pre-sup 10834
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3711  df-csb 3828  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-se 5527  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-isom 6409  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-sup 9085  df-oi 9153  df-card 9582  df-pnf 10896  df-mnf 10897  df-xr 10898  df-ltxr 10899  df-le 10900  df-sub 11091  df-neg 11092  df-div 11517  df-nn 11858  df-2 11920  df-3 11921  df-n0 12118  df-z 12204  df-uz 12466  df-rp 12614  df-fz 13123  df-fzo 13266  df-seq 13604  df-exp 13665  df-hash 13927  df-cj 14692  df-re 14693  df-im 14694  df-sqrt 14828  df-abs 14829  df-clim 15079  df-prod 15498
This theorem is referenced by:  risefallfac  15616  gausslemma2dlem5  26281  gausslemma2dlem6  26282  breprexpnat  32355  circlemethnat  32362  circlevma  32363  circlemethhgt  32364  bcprod  33451  etransclem23  43506  hoicvrrex  43802  ovnhoilem1  43847  vonsn  43937
  Copyright terms: Public domain W3C validator