Step | Hyp | Ref
| Expression |
1 | | prodeq1 15600 |
. . . 4
⊢ (𝑥 = ∅ → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵) |
2 | 1 | fveq2d 6772 |
. . 3
⊢ (𝑥 = ∅ →
(abs‘∏𝑘 ∈
𝑥 𝐵) = (abs‘∏𝑘 ∈ ∅ 𝐵)) |
3 | | prodeq1 15600 |
. . 3
⊢ (𝑥 = ∅ → ∏𝑘 ∈ 𝑥 (abs‘𝐵) = ∏𝑘 ∈ ∅ (abs‘𝐵)) |
4 | 2, 3 | eqeq12d 2755 |
. 2
⊢ (𝑥 = ∅ →
((abs‘∏𝑘 ∈
𝑥 𝐵) = ∏𝑘 ∈ 𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘 ∈ ∅ 𝐵) = ∏𝑘 ∈ ∅ (abs‘𝐵))) |
5 | | prodeq1 15600 |
. . . 4
⊢ (𝑥 = 𝑦 → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ 𝑦 𝐵) |
6 | 5 | fveq2d 6772 |
. . 3
⊢ (𝑥 = 𝑦 → (abs‘∏𝑘 ∈ 𝑥 𝐵) = (abs‘∏𝑘 ∈ 𝑦 𝐵)) |
7 | | prodeq1 15600 |
. . 3
⊢ (𝑥 = 𝑦 → ∏𝑘 ∈ 𝑥 (abs‘𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵)) |
8 | 6, 7 | eqeq12d 2755 |
. 2
⊢ (𝑥 = 𝑦 → ((abs‘∏𝑘 ∈ 𝑥 𝐵) = ∏𝑘 ∈ 𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘 ∈ 𝑦 𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵))) |
9 | | prodeq1 15600 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
10 | 9 | fveq2d 6772 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (abs‘∏𝑘 ∈ 𝑥 𝐵) = (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
11 | | prodeq1 15600 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘 ∈ 𝑥 (abs‘𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵)) |
12 | 10, 11 | eqeq12d 2755 |
. 2
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((abs‘∏𝑘 ∈ 𝑥 𝐵) = ∏𝑘 ∈ 𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵))) |
13 | | prodeq1 15600 |
. . . 4
⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ 𝐴 𝐵) |
14 | 13 | fveq2d 6772 |
. . 3
⊢ (𝑥 = 𝐴 → (abs‘∏𝑘 ∈ 𝑥 𝐵) = (abs‘∏𝑘 ∈ 𝐴 𝐵)) |
15 | | prodeq1 15600 |
. . 3
⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ 𝑥 (abs‘𝐵) = ∏𝑘 ∈ 𝐴 (abs‘𝐵)) |
16 | 14, 15 | eqeq12d 2755 |
. 2
⊢ (𝑥 = 𝐴 → ((abs‘∏𝑘 ∈ 𝑥 𝐵) = ∏𝑘 ∈ 𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘 ∈ 𝐴 𝐵) = ∏𝑘 ∈ 𝐴 (abs‘𝐵))) |
17 | | abs1 14990 |
. . . 4
⊢
(abs‘1) = 1 |
18 | | prod0 15634 |
. . . . 5
⊢
∏𝑘 ∈
∅ 𝐵 =
1 |
19 | 18 | fveq2i 6771 |
. . . 4
⊢
(abs‘∏𝑘
∈ ∅ 𝐵) =
(abs‘1) |
20 | | prod0 15634 |
. . . 4
⊢
∏𝑘 ∈
∅ (abs‘𝐵) =
1 |
21 | 17, 19, 20 | 3eqtr4i 2777 |
. . 3
⊢
(abs‘∏𝑘
∈ ∅ 𝐵) =
∏𝑘 ∈ ∅
(abs‘𝐵) |
22 | 21 | a1i 11 |
. 2
⊢ (𝜑 → (abs‘∏𝑘 ∈ ∅ 𝐵) = ∏𝑘 ∈ ∅ (abs‘𝐵)) |
23 | | eqidd 2740 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (abs‘∏𝑘 ∈ 𝑦 𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵)) → (∏𝑘 ∈ 𝑦 (abs‘𝐵) · (abs‘⦋𝑧 / 𝑘⦌𝐵)) = (∏𝑘 ∈ 𝑦 (abs‘𝐵) · (abs‘⦋𝑧 / 𝑘⦌𝐵))) |
24 | | nfv 1920 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) |
25 | | nfcsb1v 3861 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 |
26 | | fprodabs2.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ Fin) |
27 | 26 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴) → 𝐴 ∈ Fin) |
28 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ 𝐴) |
29 | | ssfi 8921 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → 𝑦 ∈ Fin) |
30 | 27, 28, 29 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴) → 𝑦 ∈ Fin) |
31 | 30 | adantrr 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑦 ∈ Fin) |
32 | | simprr 769 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
33 | 32 | eldifbd 3904 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑧 ∈ 𝑦) |
34 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝜑) |
35 | 28 | sselda 3925 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝐴) |
36 | 35 | adantlrr 717 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝐴) |
37 | | fprodabs2.b |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
38 | 34, 36, 37 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) |
39 | | csbeq1a 3850 |
. . . . . . . 8
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
40 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝜑) |
41 | 32 | eldifad 3903 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ 𝐴) |
42 | | nfv 1920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝜑 ∧ 𝑧 ∈ 𝐴) |
43 | 25 | nfel1 2924 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ |
44 | 42, 43 | nfim 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑘((𝜑 ∧ 𝑧 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
45 | | eleq1w 2822 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑧 → (𝑘 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
46 | 45 | anbi2d 628 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑧 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑧 ∈ 𝐴))) |
47 | 39 | eleq1d 2824 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ)) |
48 | 46, 47 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑧 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ))) |
49 | 44, 48, 37 | chvarfv 2236 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
50 | 40, 41, 49 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
51 | 24, 25, 31, 32, 33, 38, 39, 50 | fprodsplitsn 15680 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)) |
52 | 51 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (abs‘∏𝑘 ∈ 𝑦 𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)) |
53 | 52 | fveq2d 6772 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (abs‘∏𝑘 ∈ 𝑦 𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵)) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (abs‘(∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵))) |
54 | 24, 31, 38 | fprodclf 15683 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℂ) |
55 | 54, 50 | absmuld 15147 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (abs‘(∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)) = ((abs‘∏𝑘 ∈ 𝑦 𝐵) · (abs‘⦋𝑧 / 𝑘⦌𝐵))) |
56 | 55 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (abs‘∏𝑘 ∈ 𝑦 𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵)) → (abs‘(∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)) = ((abs‘∏𝑘 ∈ 𝑦 𝐵) · (abs‘⦋𝑧 / 𝑘⦌𝐵))) |
57 | | oveq1 7275 |
. . . . . 6
⊢
((abs‘∏𝑘
∈ 𝑦 𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵) → ((abs‘∏𝑘 ∈ 𝑦 𝐵) · (abs‘⦋𝑧 / 𝑘⦌𝐵)) = (∏𝑘 ∈ 𝑦 (abs‘𝐵) · (abs‘⦋𝑧 / 𝑘⦌𝐵))) |
58 | 57 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (abs‘∏𝑘 ∈ 𝑦 𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵)) → ((abs‘∏𝑘 ∈ 𝑦 𝐵) · (abs‘⦋𝑧 / 𝑘⦌𝐵)) = (∏𝑘 ∈ 𝑦 (abs‘𝐵) · (abs‘⦋𝑧 / 𝑘⦌𝐵))) |
59 | 53, 56, 58 | 3eqtrd 2783 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (abs‘∏𝑘 ∈ 𝑦 𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵)) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (∏𝑘 ∈ 𝑦 (abs‘𝐵) · (abs‘⦋𝑧 / 𝑘⦌𝐵))) |
60 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑘abs |
61 | 60, 25 | nffv 6778 |
. . . . . 6
⊢
Ⅎ𝑘(abs‘⦋𝑧 / 𝑘⦌𝐵) |
62 | 38 | abscld 15129 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → (abs‘𝐵) ∈ ℝ) |
63 | 62 | recnd 10987 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → (abs‘𝐵) ∈ ℂ) |
64 | 39 | fveq2d 6772 |
. . . . . 6
⊢ (𝑘 = 𝑧 → (abs‘𝐵) = (abs‘⦋𝑧 / 𝑘⦌𝐵)) |
65 | 50 | abscld 15129 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (abs‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℝ) |
66 | 65 | recnd 10987 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (abs‘⦋𝑧 / 𝑘⦌𝐵) ∈ ℂ) |
67 | 24, 61, 31, 32, 33, 63, 64, 66 | fprodsplitsn 15680 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵) = (∏𝑘 ∈ 𝑦 (abs‘𝐵) · (abs‘⦋𝑧 / 𝑘⦌𝐵))) |
68 | 67 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (abs‘∏𝑘 ∈ 𝑦 𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵) = (∏𝑘 ∈ 𝑦 (abs‘𝐵) · (abs‘⦋𝑧 / 𝑘⦌𝐵))) |
69 | 23, 59, 68 | 3eqtr4d 2789 |
. . 3
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (abs‘∏𝑘 ∈ 𝑦 𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵)) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵)) |
70 | 69 | ex 412 |
. 2
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((abs‘∏𝑘 ∈ 𝑦 𝐵) = ∏𝑘 ∈ 𝑦 (abs‘𝐵) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵))) |
71 | 4, 8, 12, 16, 22, 70, 26 | findcard2d 8914 |
1
⊢ (𝜑 → (abs‘∏𝑘 ∈ 𝐴 𝐵) = ∏𝑘 ∈ 𝐴 (abs‘𝐵)) |