Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodabs2 Structured version   Visualization version   GIF version

Theorem fprodabs2 45591
Description: The absolute value of a finite product . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodabs2.a (𝜑𝐴 ∈ Fin)
fprodabs2.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodabs2 (𝜑 → (abs‘∏𝑘𝐴 𝐵) = ∏𝑘𝐴 (abs‘𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodabs2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15928 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21fveq2d 6885 . . 3 (𝑥 = ∅ → (abs‘∏𝑘𝑥 𝐵) = (abs‘∏𝑘 ∈ ∅ 𝐵))
3 prodeq1 15928 . . 3 (𝑥 = ∅ → ∏𝑘𝑥 (abs‘𝐵) = ∏𝑘 ∈ ∅ (abs‘𝐵))
42, 3eqeq12d 2752 . 2 (𝑥 = ∅ → ((abs‘∏𝑘𝑥 𝐵) = ∏𝑘𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘 ∈ ∅ 𝐵) = ∏𝑘 ∈ ∅ (abs‘𝐵)))
5 prodeq1 15928 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐵 = ∏𝑘𝑦 𝐵)
65fveq2d 6885 . . 3 (𝑥 = 𝑦 → (abs‘∏𝑘𝑥 𝐵) = (abs‘∏𝑘𝑦 𝐵))
7 prodeq1 15928 . . 3 (𝑥 = 𝑦 → ∏𝑘𝑥 (abs‘𝐵) = ∏𝑘𝑦 (abs‘𝐵))
86, 7eqeq12d 2752 . 2 (𝑥 = 𝑦 → ((abs‘∏𝑘𝑥 𝐵) = ∏𝑘𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)))
9 prodeq1 15928 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
109fveq2d 6885 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (abs‘∏𝑘𝑥 𝐵) = (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
11 prodeq1 15928 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 (abs‘𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵))
1210, 11eqeq12d 2752 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((abs‘∏𝑘𝑥 𝐵) = ∏𝑘𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵)))
13 prodeq1 15928 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐵 = ∏𝑘𝐴 𝐵)
1413fveq2d 6885 . . 3 (𝑥 = 𝐴 → (abs‘∏𝑘𝑥 𝐵) = (abs‘∏𝑘𝐴 𝐵))
15 prodeq1 15928 . . 3 (𝑥 = 𝐴 → ∏𝑘𝑥 (abs‘𝐵) = ∏𝑘𝐴 (abs‘𝐵))
1614, 15eqeq12d 2752 . 2 (𝑥 = 𝐴 → ((abs‘∏𝑘𝑥 𝐵) = ∏𝑘𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘𝐴 𝐵) = ∏𝑘𝐴 (abs‘𝐵)))
17 abs1 15321 . . . 4 (abs‘1) = 1
18 prod0 15964 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
1918fveq2i 6884 . . . 4 (abs‘∏𝑘 ∈ ∅ 𝐵) = (abs‘1)
20 prod0 15964 . . . 4 𝑘 ∈ ∅ (abs‘𝐵) = 1
2117, 19, 203eqtr4i 2769 . . 3 (abs‘∏𝑘 ∈ ∅ 𝐵) = ∏𝑘 ∈ ∅ (abs‘𝐵)
2221a1i 11 . 2 (𝜑 → (abs‘∏𝑘 ∈ ∅ 𝐵) = ∏𝑘 ∈ ∅ (abs‘𝐵))
23 eqidd 2737 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
24 nfv 1914 . . . . . . . 8 𝑘(𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
25 nfcsb1v 3903 . . . . . . . 8 𝑘𝑧 / 𝑘𝐵
26 fprodabs2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
2726adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴 ∈ Fin)
28 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦𝐴)
29 ssfi 9192 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
3027, 28, 29syl2anc 584 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ Fin)
3130adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
32 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
3332eldifbd 3944 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
34 simpll 766 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
3528sselda 3963 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑘𝐴)
3635adantlrr 721 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
37 fprodabs2.b . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3834, 36, 37syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
39 csbeq1a 3893 . . . . . . . 8 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
40 simpl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
4132eldifad 3943 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
42 nfv 1914 . . . . . . . . . . 11 𝑘(𝜑𝑧𝐴)
4325nfel1 2916 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
4442, 43nfim 1896 . . . . . . . . . 10 𝑘((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
45 eleq1w 2818 . . . . . . . . . . . 12 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
4645anbi2d 630 . . . . . . . . . . 11 (𝑘 = 𝑧 → ((𝜑𝑘𝐴) ↔ (𝜑𝑧𝐴)))
4739eleq1d 2820 . . . . . . . . . . 11 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
4846, 47imbi12d 344 . . . . . . . . . 10 (𝑘 = 𝑧 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)))
4944, 48, 37chvarfv 2241 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5040, 41, 49syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5124, 25, 31, 32, 33, 38, 39, 50fprodsplitsn 16010 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
5251adantr 480 . . . . . 6 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
5352fveq2d 6885 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (abs‘(∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
5424, 31, 38fprodclf 16013 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
5554, 50absmuld 15478 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (abs‘(∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)) = ((abs‘∏𝑘𝑦 𝐵) · (abs‘𝑧 / 𝑘𝐵)))
5655adantr 480 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → (abs‘(∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)) = ((abs‘∏𝑘𝑦 𝐵) · (abs‘𝑧 / 𝑘𝐵)))
57 oveq1 7417 . . . . . 6 ((abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵) → ((abs‘∏𝑘𝑦 𝐵) · (abs‘𝑧 / 𝑘𝐵)) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
5857adantl 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → ((abs‘∏𝑘𝑦 𝐵) · (abs‘𝑧 / 𝑘𝐵)) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
5953, 56, 583eqtrd 2775 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
60 nfcv 2899 . . . . . . 7 𝑘abs
6160, 25nffv 6891 . . . . . 6 𝑘(abs‘𝑧 / 𝑘𝐵)
6238abscld 15460 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (abs‘𝐵) ∈ ℝ)
6362recnd 11268 . . . . . 6 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (abs‘𝐵) ∈ ℂ)
6439fveq2d 6885 . . . . . 6 (𝑘 = 𝑧 → (abs‘𝐵) = (abs‘𝑧 / 𝑘𝐵))
6550abscld 15460 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (abs‘𝑧 / 𝑘𝐵) ∈ ℝ)
6665recnd 11268 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (abs‘𝑧 / 𝑘𝐵) ∈ ℂ)
6724, 61, 31, 32, 33, 63, 64, 66fprodsplitsn 16010 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
6867adantr 480 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
6923, 59, 683eqtr4d 2781 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵))
7069ex 412 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵)))
714, 8, 12, 16, 22, 70, 26findcard2d 9185 1 (𝜑 → (abs‘∏𝑘𝐴 𝐵) = ∏𝑘𝐴 (abs‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  csb 3879  cdif 3928  cun 3929  wss 3931  c0 4313  {csn 4606  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  1c1 11135   · cmul 11139  abscabs 15258  cprod 15924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-prod 15925
This theorem is referenced by:  etransclem41  46271
  Copyright terms: Public domain W3C validator