Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodabs2 Structured version   Visualization version   GIF version

Theorem fprodabs2 41752
Description: The absolute value of a finite product . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodabs2.a (𝜑𝐴 ∈ Fin)
fprodabs2.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodabs2 (𝜑 → (abs‘∏𝑘𝐴 𝐵) = ∏𝑘𝐴 (abs‘𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodabs2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15251 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21fveq2d 6667 . . 3 (𝑥 = ∅ → (abs‘∏𝑘𝑥 𝐵) = (abs‘∏𝑘 ∈ ∅ 𝐵))
3 prodeq1 15251 . . 3 (𝑥 = ∅ → ∏𝑘𝑥 (abs‘𝐵) = ∏𝑘 ∈ ∅ (abs‘𝐵))
42, 3eqeq12d 2834 . 2 (𝑥 = ∅ → ((abs‘∏𝑘𝑥 𝐵) = ∏𝑘𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘 ∈ ∅ 𝐵) = ∏𝑘 ∈ ∅ (abs‘𝐵)))
5 prodeq1 15251 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐵 = ∏𝑘𝑦 𝐵)
65fveq2d 6667 . . 3 (𝑥 = 𝑦 → (abs‘∏𝑘𝑥 𝐵) = (abs‘∏𝑘𝑦 𝐵))
7 prodeq1 15251 . . 3 (𝑥 = 𝑦 → ∏𝑘𝑥 (abs‘𝐵) = ∏𝑘𝑦 (abs‘𝐵))
86, 7eqeq12d 2834 . 2 (𝑥 = 𝑦 → ((abs‘∏𝑘𝑥 𝐵) = ∏𝑘𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)))
9 prodeq1 15251 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
109fveq2d 6667 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (abs‘∏𝑘𝑥 𝐵) = (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
11 prodeq1 15251 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑥 (abs‘𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵))
1210, 11eqeq12d 2834 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((abs‘∏𝑘𝑥 𝐵) = ∏𝑘𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵)))
13 prodeq1 15251 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐵 = ∏𝑘𝐴 𝐵)
1413fveq2d 6667 . . 3 (𝑥 = 𝐴 → (abs‘∏𝑘𝑥 𝐵) = (abs‘∏𝑘𝐴 𝐵))
15 prodeq1 15251 . . 3 (𝑥 = 𝐴 → ∏𝑘𝑥 (abs‘𝐵) = ∏𝑘𝐴 (abs‘𝐵))
1614, 15eqeq12d 2834 . 2 (𝑥 = 𝐴 → ((abs‘∏𝑘𝑥 𝐵) = ∏𝑘𝑥 (abs‘𝐵) ↔ (abs‘∏𝑘𝐴 𝐵) = ∏𝑘𝐴 (abs‘𝐵)))
17 abs1 14645 . . . 4 (abs‘1) = 1
18 prod0 15285 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
1918fveq2i 6666 . . . 4 (abs‘∏𝑘 ∈ ∅ 𝐵) = (abs‘1)
20 prod0 15285 . . . 4 𝑘 ∈ ∅ (abs‘𝐵) = 1
2117, 19, 203eqtr4i 2851 . . 3 (abs‘∏𝑘 ∈ ∅ 𝐵) = ∏𝑘 ∈ ∅ (abs‘𝐵)
2221a1i 11 . 2 (𝜑 → (abs‘∏𝑘 ∈ ∅ 𝐵) = ∏𝑘 ∈ ∅ (abs‘𝐵))
23 eqidd 2819 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
24 nfv 1906 . . . . . . . 8 𝑘(𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
25 nfcsb1v 3904 . . . . . . . 8 𝑘𝑧 / 𝑘𝐵
26 fprodabs2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
2726adantr 481 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴 ∈ Fin)
28 simpr 485 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦𝐴)
29 ssfi 8726 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
3027, 28, 29syl2anc 584 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ Fin)
3130adantrr 713 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
32 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
3332eldifbd 3946 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
34 simpll 763 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
3528sselda 3964 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑘𝑦) → 𝑘𝐴)
3635adantlrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
37 fprodabs2.b . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3834, 36, 37syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
39 csbeq1a 3894 . . . . . . . 8 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
40 simpl 483 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
4132eldifad 3945 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
42 nfv 1906 . . . . . . . . . . 11 𝑘(𝜑𝑧𝐴)
4325nfel1 2991 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
4442, 43nfim 1888 . . . . . . . . . 10 𝑘((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
45 eleq1w 2892 . . . . . . . . . . . 12 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
4645anbi2d 628 . . . . . . . . . . 11 (𝑘 = 𝑧 → ((𝜑𝑘𝐴) ↔ (𝜑𝑧𝐴)))
4739eleq1d 2894 . . . . . . . . . . 11 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
4846, 47imbi12d 346 . . . . . . . . . 10 (𝑘 = 𝑧 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)))
4944, 48, 37chvarfv 2232 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5040, 41, 49syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5124, 25, 31, 32, 33, 38, 39, 50fprodsplitsn 15331 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
5251adantr 481 . . . . . 6 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
5352fveq2d 6667 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (abs‘(∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)))
5424, 31, 38fprodclf 15334 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
5554, 50absmuld 14802 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (abs‘(∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)) = ((abs‘∏𝑘𝑦 𝐵) · (abs‘𝑧 / 𝑘𝐵)))
5655adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → (abs‘(∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵)) = ((abs‘∏𝑘𝑦 𝐵) · (abs‘𝑧 / 𝑘𝐵)))
57 oveq1 7152 . . . . . 6 ((abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵) → ((abs‘∏𝑘𝑦 𝐵) · (abs‘𝑧 / 𝑘𝐵)) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
5857adantl 482 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → ((abs‘∏𝑘𝑦 𝐵) · (abs‘𝑧 / 𝑘𝐵)) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
5953, 56, 583eqtrd 2857 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
60 nfcv 2974 . . . . . . 7 𝑘abs
6160, 25nffv 6673 . . . . . 6 𝑘(abs‘𝑧 / 𝑘𝐵)
6238abscld 14784 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (abs‘𝐵) ∈ ℝ)
6362recnd 10657 . . . . . 6 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → (abs‘𝐵) ∈ ℂ)
6439fveq2d 6667 . . . . . 6 (𝑘 = 𝑧 → (abs‘𝐵) = (abs‘𝑧 / 𝑘𝐵))
6550abscld 14784 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (abs‘𝑧 / 𝑘𝐵) ∈ ℝ)
6665recnd 10657 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (abs‘𝑧 / 𝑘𝐵) ∈ ℂ)
6724, 61, 31, 32, 33, 63, 64, 66fprodsplitsn 15331 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
6867adantr 481 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵) = (∏𝑘𝑦 (abs‘𝐵) · (abs‘𝑧 / 𝑘𝐵)))
6923, 59, 683eqtr4d 2863 . . 3 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵)) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵))
7069ex 413 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((abs‘∏𝑘𝑦 𝐵) = ∏𝑘𝑦 (abs‘𝐵) → (abs‘∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = ∏𝑘 ∈ (𝑦 ∪ {𝑧})(abs‘𝐵)))
714, 8, 12, 16, 22, 70, 26findcard2d 8748 1 (𝜑 → (abs‘∏𝑘𝐴 𝐵) = ∏𝑘𝐴 (abs‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  csb 3880  cdif 3930  cun 3931  wss 3933  c0 4288  {csn 4557  cfv 6348  (class class class)co 7145  Fincfn 8497  cc 10523  1c1 10526   · cmul 10530  abscabs 14581  cprod 15247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-prod 15248
This theorem is referenced by:  etransclem41  42437
  Copyright terms: Public domain W3C validator